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Objective 
 

This book will present the work of the research results developed by the research cooperation between the Università 
Politecnica delle Marche (Italy), HTWG Konstanz (Germany), Reutlingen University (Germany) and the British University of 
Cairo (Egypt). The topics of the research work are signal detection, acquisition and processing, platforms and applications 
processing vital data, physiological measurement, low power wearable sensors, algorithm design for pattern classification, 
real-time data mining.
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Monitoring Drivers’ Heart Rates and Predicting Heart Attacks 
Ann Nosseir, British University in Egypt and Institute of National Planning 

 
 
 

Abstract— Driving for long hours can cause heart attack. 
Especially, track drivers spend more time driving to get more 
money and they take less rests even they are quite tired.This 
work develops a model that predicts a heart attack before 
happening. Support Vector Machine (SVM), Naïve- Bayses, 
Xgboost and KNN are used to develop the model. The accuracy 
reported are 91.73 Support Vector Machine, 85.12 Naïve Bayes, 
98.7 Xgboost, and 88.42 KNN. 

I. INTRODUCTION 

A heart attack, also known as a myocardial infraction, is a 
medical emergency situation that occurs when a heart muscle 
loses the access of blood that brings it oxygen because it 
becomes blocked. If the flow of blood does not get restored in 
a timely manner, the heart muscle will cease to function. A 
heart attack can also be referred to as a myocardial infraction. 

With the traffic, the adrenalin pumping will increase heart 
rate and blood pressure and, in that time, increase the risk of 
heart attack. 

This work develops a model using machine learning 
techniques to predict heart attacks. It uses. Support Vector 
Machine (SVM), Naïve-Bayses, Xgboost and KNN. the 
results show that accuracy reaches 98.7% using Xgboost. The 
following parts shows the details of the work. 

 
* Ann Nosseir is at British University in Egypt and Institute of National 
(Email: ann.nosseir@bue.edu.eg; nosseir12@yahhoc.o.uk) 

 
II. METHODOLOGY 

 
 

 
Figure 1. Steps of developing the model. 
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A. Data Collection and Preprocessing 
 

First, the data is collected from Kaggel[11]. The data has 
the following attributes: 

1. Age: Age of the patient 
 

2. Sex: Sex of the patient 
 

3. Exang: exercise induced angina (1=yes, 0=no) 
 

4. ca: number of major vessels (0-3) 
 

5. cp : Chest Pain type chest pain type; 1= typical 
angina, 2=atypical angina, 3= non-anginal pain, 4: 
asymptomatic 

 
6. trtbps: resting blood pressure (in mm Hg) 

 
7. chol : cholesterol in mg/dl fetched via BMI sensor 

 
8. fbs : (fasting blood sugar > 120 mg/dl) (1 = true; 0 = 

false) 
 

9. rest_ecg : resting electrocardiographic results; 0= 
normal, 1= having ST-T wave abnormality, 2= showing 
probable ordefinite left ventricular hypertrophy by Estes’ 
criteria 

 
10. thalach: maximum heart rate achieved 

Target: 0= less chance of a heart attack, 1= high chance of 
heart attack 

The data has 700 record of different patients. Data was 
normalised with Min-Max. It is one of the most common ways to 
normalize data. it maps the minimum and maximum values of 
a feature to 0 and 1 respectively. So, all the other values are 
transformed to a value between 0 and 1 linearly. 

B. Model Development 
The researcher tested mainly four algorithms namely 

Support Vector Machine (SVM), Naïve-Bayses, Xgboost and 
KNN. 

“Support Vector Machine” (SVM) is a supervised learning 
machine learning algorithm. SVM is able to perform linear 
classification which is optimal for this dataset to separate 
between the likely to get a heart attack or not. Finding a 
hyperplane with the maximum margin (margin is basically a 
protected space around hyperplane equation) and algorithm 
tries to have maximum margin with the closest points (known 
as support vectors) [12]. 

wT(Φ(x)) + b < 0 (1) 

Figure 2 shows the hyperplane and how the classification 
works. 

 

 
 

Figure 2. Support Vector Machine SVM 
 

The second algorithm is Naïve-Bayses. Bayes Algorithm 
is famous for being both easy to use and efficient. Using this 
approach, model building and prediction are completed more 
quickly. The Naïve Byes works well on a small training data 
set on relatively small dimensions, it will perform better than 
the other models which applies in our case for our dataset. 

 
 
 
 
 

(2) 
 
 
 
 
 
 
 

• P(c|x) is the posterior probability of class (c, target) 
given predictor (x, attributes). 

• P(c) is the prior probability of class. 

• P(x|c) is the likelihood which is the probability ofthe 
predictor given class. 

• P(x) is the prior probability of the predictor. 
 

eXtreme Gradient Boosting (XGBoost) Is an Optimized 
Enhancement of Gradient Boosting. In Boosting, Weights are 
added to the model based on the residuals. However, In 
gradient boosted the loss function is optimized to correct errors 
made by previous models. XGBoost introduces new features 
to gradient boosting like regularization, tree pruning, and 
parallel processing. 

 
To Understand The XGboost Algorithm in classification, 

let’s try to predict if students pass or fail basedon the number 
of hours studied. for binary classification, the probability for 
the base model is 0.5, meaning there is a fifty percent chance 
that a student will either pass or fail. consequently, the 
residuals for the first five readings are -0.5,0.5, -0.5, 0.5 and 
0.5, respectively. XGBoost looks at which feature and split- 
point maximizes the gain. The maximum gain 
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is found where the sum of the loss from the child nodes most 
reduces the loss in the parent node. In math this is given by: 

 
 
 

(3) 
 
 
 

KNN stands for K-nearest neighbour, it’s one of the 
Supervised learning algorithm mostly used for classification of 
data on the basis how it’s neighbour are classified. KNN stores 
all available cases and classifies new cases based on a similarity 
measure. K in KNN is a parameter that refers to the number of 
the nearest neighbours to include in the majority voting process. 

 
 
 
 
 
 
 

(4) 
 
 
 
 
 
 
 
 

We trained the algorithms on 80% of the data from the 
dataset, we tested the algorithms on 20% of the rest of the data 
to determine the accuracy of each algorithm model used. 

 
III. RESULTS 

 
Table 1 shows the results of the four algorithms. The Xgboost 

reported the highest accuracy of 98.7%. that is followed by 
theSVM of 91.73% and then KNN of 88.42% and the least 
accuracy is achieved by the Naïve Bayes which is 85.12%. 

 
TABLE I. RESULTS 

 

Machine 

Learning 

SVM Naïve 
Bayes 

Xgboost KNN 

Accuracy 91.73 85.12 98.7 88.42 

IV. CONCLUSION 

Driving for long hours can cause heart attack. Additionally, 
Heart attacks are a very important and critical illness, it cannot 
be easily detected and can sometimes become active at very 
weird and unpredictable times which makes the ability to 
rightfully predetermine and predict if a patient has a chance 
of likely getting a heart attack or not by using a program that 
checks on the parameters and stats that surround what affects 
and causes heart attacks is greatly beneficial to the medical 
field as it can potentially save millions of lives.This work has 
used a dataset provided by kaggle to developa model this can 
predict this disease. We have compared the results for the 
following algorithms: Support Vector Machine (SVM), 
Naïve-Bayses, Xgboost and KNN. and, Xgboos provides the 
best accuracy which is 98.7. 
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Software Scripts for Sensor Data Extraction in Rasberry Pi: user-space 
and kernel-space comparison 

 
Daniel Vélez, Natividad Martínez Madrid and Ralf Seepold 

 
Abstract— This paper compares two popular scripting 

implementations for hardware prototyping: Python scripts exe- 
cut from User-Space and C-based Linux-Driver processes 
executed from Kernel-Space, which can provide information to 
researchers when considering one or another in their 
implementations. Conclusions exhibit that deploying software 
scripts in the kernel space makes it possible to grant a certain 
quality of sensor information using a Raspberry Pi without the 
need for advanced real-time operational systems. 

 
I. INTRODUCTION 

Fast prototyping over open-access Hardware platforms has 
become a valuable teaching tool for spreading technological 
knowledge among students and the general population. Since 
the introduction of cheap open Hardware platforms like Ar- 
Arduino and Raspberry Pi in 2010 and 2012, general 
enthusiasts have gained easy access to electronic 
components related to computing, robotics, IoT technologies, 
and smart devices, which until then were only accessible to 
high education institutes or specialized tech companies. 
Similarly, several research initiatives have benefited from 
these open-access hardware platforms, easing the 
implementation and testing of novel hardware arrangements 
for different purposes. This has settled down a set of preferred 
technologies in the last years in academia: around ten years 
ago,  languages like Java and C++ used to lead the surveys 
[1], although python was settling down as preferred in 
academic computing [2]; Nowadays, Python has overcome 
the academic spheres and is positioned as a top trend for 
industry as well [3]. Support communities and collaborative 
work have been crucial for establishing an extensive 
collection of standard libraries that make Python-Language 
easy to use and adapt to domains such as Big Data, Artificial 
Intelligence, and Machine Learning. The popularity of 
interpreted languages over structured compiled languages has 
induced the misleading perception that scripting and Software 
development share the same process. Nonetheless, regarding 
hardware prototyping, script procedures that automate system 
tasks are crucial; thus, interpreted languages like Python are 
important. This paper compares two popular scripting 
implementations for hardware prototyping: Python scripts 
executed from User-Space and C-based Linux-Driver 
processes executed from Kernel-Space. These comparisons 
could provide valuable information to researchers considering 
one or the other technology in their implementations. 

 
* This research was partially funded by Carl Zeiss Foundation and the 

MORPHEUS-Project “Non-invasive system for measuring parameters 
relevant to sleep quality” (project number: P2019-03-003) 

D. Vélez is with the Ubiquitous Computing Lab at HTWG Konstanz, 
Alfred-Wachtel-Str. 8, 78462 Konstanz, Germany (phone: +49 7531 206- 
703; Email: jvelezg@htwg-konstanz.de). 

II. CURRENT WIDESPREAD OPEN-ACCESS 
TECHNOLOGIES FOR HARDWARE PROTOTYPING 

A. Arduino 

The Arduino Board (UNO) was commercially launched in 
2010 after several years of research [4]. The availability of 
this family of boards was a huge step forward in simplifying 
the process of microcontroller development for educational 
purposes at a low price, making it available for hobbyists, 
teachers, and students alike. Their regular modules include 
microcontrollers such as Atmel ATmega328p or ATmega168, 
which can provide enough capability to support a wide range 
of projects. Similarly, the Arduino-IDE platform simplifies 
the coding challenges when developing in programming 
languages like C and C++. Nowadays, it has become a 
popular choice in the research of electronics and prototypes in 
different domains, including hardware communication, 
software prototyping, home general automation, agriculture, 
healthcare, mining industry, energy, defense, IoT, and 
education, increasing affordability for both profit and non-
profit institutions [5]. Some of the limitations of Arduino 
hardware and Software identified in the literature are listed 
below [5]: 

• Limited processing power 
• Small storage space and memory 
• Requires efforts to accomplish tasks such as scheduling 

and database storage. 
• Cannot handle large complexities of advanced projects. 
• Kits are not suitable for high-performance Hardware. 

 

B. Raspberry-Pi 

The Raspberry Pi became commercially available in 2012. 
It was intended to get people interested in computing and 
coding. Since its origins, it has provided support for coding in 
Python as the primary programming language, although it 
also included support for other languages like BASIC, C/C++, 
JAVA, Perl, and Ruby. The general availability of this 
achievable tool encouraged people to get in touch with the 
guts of the electronic devices, which until then was 
demotivated for the sake of the durability and secrecy of 
regular commercial electronics [6].  

 
 
 
 
N. Martínez Madrid is with the IoT Lab at Reutlingen University, 

Alteburgstr. 150, 72762 Reutlingen, Germany (Email: 
natividad.martinez@reutlingen-university.de). 

R. Seepold is with the Ubiquitous Computing Lab at HTWG Konstanz, 
Alfred-Wachtel-Str. 8, 78462 Konstanz, Germany (Email: ralf.seepold@htwg-
konstanz.de)
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The Raspberry Pi 4 Model B hardware specifications 
include: 

• Quad-core 64-bit ARM-Cortex A72 running at 1.5GHz 
• 1, 2 and 4 Gigabyte LPDDR4 RAM options 
• H.265 (HEVC) hardware decode (up to 4Kp60) 
• H.264 hardware decode (up to 1080p60) 
• VideoCore VI 3D Graphics 
• Supports dual HDMI display output up to 4Kp60 
Easy interface with peripherals is the main feature of the 

Raspberry products. Their GPIO pins interface can be used as 
straightforward software-controlled input and output. 
However, more recent models can also be switched into I2C, 
UART and SPI, which gives users much more flexibility 
when attaching add-on hardware [7]. Software capabilities of 
Raspberry Pi include a mature Linux software stack, recent 
Linux kernel support, and availability of GPU functions using 
standard APIs. The Operative Systems recommended to 
support these development boards come in different flavors; 
nonetheless, the most popular and recommended choices are 
based on Linux OS. Some of the weaknesses of the Raspberry 
Pi identified in the literature are listed below [5]: 

• Raspberry Pi boards are not always available for long. 
• The Operating System (OS) runs on an SD Card 
• Absence of USB header connectors 
• Absence of Real-time Clock with Battery Backup 
• Absence of Onboard ADC 
• Absence of EEPROM/FRAM/SPI Flash 
• Limited Universal Asynchronous Receiver 

Transmitters (UARTs) 
• Raspberry cannot handle External Power Supply 
• Poor thermal Management 
• Raspberry Pi boards were not designed for commercial 

products or large-scale projects but for small projects. 

III. FAST HARDWARE PROTOTYPE 
PROGRAMMING LANGUAGES 

The programming and configuration languages used to 
operate the electronic components are at the top of the 
previously mentioned open-access hardware development 
platforms. Regular Hardware prototyping is usually based on 
simulation platforms, implemented over languages like 
SPICE (Simulation Program for Integrated Circuit Emphasis) 
and focused on circuit design with Hardware Description 
Languages (HDLs) like VHDL, Verilog, LabVIEW, Scilab 
Xcos. In comparison, prototyping Hardware using micro-
computers like Arduino and Raspberry Pi focuses on 
enhancing the potential and functionality of commercially 
available electronic actuators by tailoring the processing 
capabilities of microprocessors to specific pre-established 
project objectives using Software scripts and procedures. 
Under this specific approach, three different code 
implementation approaches can be applied. 

For the Arduino, the approach consists of deploying the 
execution instructions (Script) directly on the chip without 
any OS (bare metal design). The advantages of this type of 
implementation include having complete control over the 
components provided on the board. 

When using a Raspberry Pi, it is possible to run Scripts on top 
of the operating system, either in user space (as a regular third-
party program) or kernel space (as drivers integrated into the 
main OS procedures). A primary disadvantage is that running 
the applications on top of the OS works slower. This can be a 
challenging aspect to consider when the data extracted needs to 
comply with a certain level of quality to ensure the reliability 
or reproducibility of specific experiments. Although in counter 
position, this strategy allows the use of available community-
supported libraries and produces code not tied to a particular 
hardware configuration, which is a valuable advantage when 
testing novel approaches with commercial Hardware and micro-
controllers. 

Regarding the Raspberry Pi approach, technologies to 
implement the procedures differ when focusing on user space or 
kernel space: 

A. Python 
Python is the de facto language for user-space configurations 

(as designed by the creators of the development board); it counts 
with a plethora of free-access and open-source libraries 
available and supported for different actuators. A tailored 
version of the language (MicroPython) is also available for 
"bare metal" or on-chip implementations optimized to run on 
microcontrollers and in constrained environments. Python 
software and documentation are licensed under the PSF License 
Agreement [8]. Some of this language's generally accepted 
advantages and disadvantages are listed below. 

Advantages: 
• Fast Learning Curve. 
• Portability. 
• Open-source. 
• Efficient for Rapid Development. 
• Automatic Memory Allocation. 
• Large Built-In Objects and Libraries. 
• Extensive Third-Party Library Availability. 
Disadvantages: 
• Not Very Fast. 
• Memory Intensive. 
• Not Optimized for Database Access. 
• No Multi-threading Support. 
• Prone to Overuse or Misuse. 

B. C language 
Despite the popularity and rise of other general-purpose 

languages, C and C++ are still considered top-class 
professional development languages for creating modern 
applications. Historically, the implementation of C-language 
marked a new era for Software development. By early 1973, 
C-based Unix OS became the most used environment at 
research-oriented academic and government organizations. 
Nowadays, C programming language is the base software 
technology behind most operating and embedded systems.  
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It is still the preferred language for working with 
system kernels and device drivers (including kernels of 
Linux, macOS, iOS, Microsoft Windows, and Android 
operating systems). Additionally, many compilers and 
interpreters used in other languages like Python are 
developed in C. Similarly, it is a common standard 
development tool for drivers in everyday electronics, the 
automotive industry, and smart home appliances [9]. The 
advantages and disadvantages of this language are listed 
below. 

Advantages: 
• Large Built-In Objects and Libraries across multiple OS. 
• Multi-threading Support. 
• It can be used for low-level programming, such as 

scripting for drivers and kernels. 
• Its dynamic memory allocation capabilities make it the 

preferred choice for scripting drivers of embedded 
systems. 

• It can efficiently work on enterprise applications. 
• Facilitates the implementation of algorithms and data 

structures, enabling faster program computations. 
Disadvantages: 
• Extended learning curve. 
• Low portability. 
• Low security given its low level of abstraction. 
• Originally, C does not support Object-Oriented 

programming, although this functionality is supported in 
C++. 

C. JavaScript 
JavaScript is another popular language for user-space 

execution. It is a multi-paradigm scripting language that has 
prototype-based object-oriented features. It was implemented 
by Brendan Eich in 1995 as a programming language for web 
pages as part of the Netscape browser using C-like syntax. By 
1998, it became a standard through ECMA International 
(currently in the 6th revision). Despite being a recognized 
standard, it was usually implemented as a complementary 
feature in different browsers and included in frameworks for 
PHP and Java.  

However, the lack of general support dampened its 
implementation. That was the case until 2009, when Ryan 
Dahl introduced Node.Js, a novel tool to build efficient web 
servers purely in JavaScript using Google’s V8 engine. 
JavaScript is now widely used in web pages, web servers, and 
mobile applications, and multiple initiatives are looking to 
bring this language into the embedded systems [10] [11]. 

The main advantages of JavaScript are those of the 
interpreted languages; it is quite suitable for the rapid 
development of prototype programs, and its event-driven 
programming style is considered an exploitable advantage for 
data processing in embedded systems [11]. Disadvantages are 
also shared, including their high memory usage and worst 
performance compared to low-level languages like C.  

JavaScript differentiates from Python because it lacks 
specialized libraries and frameworks to interface with hardware 
devices. The approaches to bringing this technology into the 
hardware environment are still early. 

 

IV. NON-INVASIVE CARDIORESPIRATION 
MEASUREMENT USIN G  FORCE RESISTIVE 

SENSOR 
The experiment was conducted as part of the Morpheus 

project trials. The MORPHEUS Box (MoBo) device aims to 
monitor patients' body signals over long periods during sleep 
using exclusively non-invasive technologies [12, Chapter 6]. 

 

 
Fig. 1.  Morpheus project layout 

 
A. Hardware configuration 

The system includes pressure sensors installed under a bed 
mattress and a computational unit,  as described by Asadov 
et al. in [13]. Three Force Sensing Resistors (FSR) are 
connected to an I2C compatible, analog-to-digital converter, 
and the signals are collected using a Raspberry Pi4. The FSR 
sensors are attached to the bed’s frame, below the mattress, 
but in contact with it. 

 

Fig. 2. Experimental system diagram 
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B. Experiment 

During the experiment, the subjects participating in the 
study lay on the bed in different positions (prone, right side, 
supine, and left side). The data extracted from the sensors is 
processed to extract respiration and Heart rate 
measurements from the subject. 

C. Software configuration 
Software Scripts were coded to extract and pre-process 

the signals from the FSR sensors, store the data locally in the 
Raspberry Pi and transmit it to a backend server. Additional 
synchronization procedures are included to verify the 
availability of the backend server and secure the 
transmission of information. The application startup 
consists of the following steps: 

1) Sync device properties with the backend server (ID, 
IP, Assigned Name). 

2) If absent, check patient ID parameters or assign a 
random unique cross-platform ID (UUID). 

3) Updates patient data ID data with the backend server. 
4) Start recording signals from FSR sensors in JSON 

data structures. 
5) Store information locally. 
6) Transmit information to the backend-server 

Fig. 3. Samples per second obtained from user-space 

 
D. User-Space: Python Implementation 

The first implementation was made for user space using 
Python on the top of a Raspberry Pi OS. The script uses 
the library Adafruit_ADS1015 to read the signals from the 
converter. Using a loop to control each iteration, the 
procedure reads each sensor once and stores the 
measurements locally using an embedded SQLite database. 
Unfortunately, when testing this version, the Software 
overloaded the memory of the Raspberry Pi device, slowing 
down the OS and making the transmission of information 
non-viable; after 10 minutes, only 1 minute of recorded 
information was transmitted to the server. Additionally, the 
SD card of Raspberry Pi got ”bricked out” due to the increased 
write cycles performed in the embedded database. 

 
E. User-Space: Simplified Python Script 

A second implementation was developed to run simplified 
Python Scripts. It consists of an orchestrator developed in 
nodeJS that runs the Python Scripts recorders to store the 
information in plain CSV files. An enhanced Python Script can 
also transmit the information via the MQTT protocol. The 
sample rate obtained with this implementation (described in 
Picture 3) was variable, with a maximum of 469 and a 
minimum of 315 samples per second (SPS). A pattern of high 
and low SPS can be identified in the plotted visualization. 

 

F. Kernel-Space: C Implementation 
For the kernel-space approach, the implementation was 

coded using C language. The Script was deployed as a kernel 
module in a Raspberry Pi OS. This configuration also implies 
the execution of a complementary user-space script that 
would collect the information sent from the kernel via Procfs 
[14]. This Script extracts the sensor data from the conversion 
register of the ADS1115 [?]. The sample rate obtained from 
this Script is shown in Figure 4. In this case, the maximum 
sample rate obtained is 337, though the memory space of the 
Procfs file limits the output. The ADS1115 component can 
provide a maximum of 860 SPS for a single sensor. The 
plotted visualization (lower part of Figure 4) shows that the 
sample rate obtained with this implementation approach is 
stable across time. 

 

Fig. 4. Samples per second obtained from kernel-space 
 
 

V. RESULTS 
Table I summarizes the results obtained in this comparison. 

Regarding the user-space approach, the OS process priority 
and allocation may interfere with the script's capacity to 
maintain a stable sample rate. In comparison, the kernel-
space approach can maintain a stable sample rate across time, 
allowing setting a fixed sample rate without needing a more 
complex implementation or a specialized Real-Time 
Operative System. 
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TABLE I  
SAMPLE  RATES  OBTAINED 

 
Script Space Min SPS Max SPS 

Adafruit_ADS1015+MQTT User-Space 315 469 
Kernel+MQTT Kernel-Space 337 337 

 
 

VI. CONCLUSIONS 
Fast prototyping over open-access Hardware platforms is 

helpful in scenarios with a pragmatic approach. The features 
provided by these development platforms, like Arduino and 
Raspberry Pi, are powerful but limited, and these limitations 
can affect the quality of data obtained during 
experimentation. The comparison described in this paper 
exhibits that by exploiting the benefits given by the Linux 
OS and deploying Software Scripts in the kernel space, it is 
possible to grant certain quality of information from the data 
extracted from sensors using a Raspberry Pi without the 
need to get involved in specialized implementations or 
using advanced Real-Time Operative Systems. 
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Abstract— Accurate monitoring of a patient's heart rate is a 
key element in the medical observation and health monitoring. 
In particular, its importance extends to the identification of 
sleep-related disorders. Various methods have been established 
that involve sensor-based recording of physiological signals 
followed by automated examination and analysis. This study 
attempts to evaluate the efficacy of a non-invasive HR 
monitoring framework based on an accelerometer sensor 
specifically during sleep. To achieve this goal, the motion 
induced by thoracic movements during cardiac contractions is 
captured by a device installed under the mattress. Signal 
filtering techniques and heart rate estimation using the symlets6 
wavelet are part of the implemented computational framework 
described in this article. Subsequent analysis indicates the 
potential applicability of this system in the prognostic domain, 
with an average error margin of approximately 3 beats per 
minute. The results obtained represent a promising 
advancement in non-invasive heart rate monitoring during 
sleep, with potential implications for improved diagnosis and 
management of cardiovascular and sleep-related disorders. 

 
Clinical Relevance—This research provides a foundation for 

contactless monitoring of health signs in domain of sleep 
analysis. 

I. INTRODUCTION 

Continuous and comprehensive monitoring of a patient's 
vital signs remains a critical aspect of chronic disease 
management in various healthcare settings [1]. The traditional 
approach to monitoring, mainly in clinical settings, poses 
significant challenges due to its intrusive nature and limited 
accessibility, thereby affecting the patient's comfort [2]. 

The emergence of non-intrusive monitoring systems offers 
a promising solution to these challenges, enabling unobtrusive 
and remote patient monitoring [3]. The integration of these 
systems directly into a patient's bed, whether in a hospital or 
home setting, holds immense potential for continuous and 
discreet monitoring of vital signs [2]. 

Among these vital signs, heart rate (HR) plays a central 
role as an indicator of several serious health conditions such as 
arrhythmia or bleeding [4]. Its importance extends to sleep- 
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related assessments due to its close relationship with 
cardiovascular health and its utility in automated sleep stage 
classification [5, 6]. 

However, the gold standard for sleep pattern assessment, 
polysomnography (PSG), has limitations in terms of cost, 
complexity, and accessibility that limit its widespread use 
beyond clinical settings [7]. This gap has sparked interest in 
the development of cost-effective, user-friendly ambulatory 
monitoring systems tailored for home care [8]. 

Numerous methodologies exist for the acquisition of 
cardiac activity data [9]. A comprehensive review of non-
contact cardiorespiratory monitoring systems can be found in 
[10]. Various approaches have been developed to measure 
ballistocardiography (BCG) signals during sleep, including 
different sensor types, numbers, and placement strategies. 
Some studies have used load cells [11], piezoelectric 
transducers [12] or pressure sensors [13], among other 
variations. 

The exploration of various measurement techniques, 
including ballistocardiography (BCG) signals, demonstrates 
advances in sensors such as accelerometers powered by micro-
electro-mechanical systems (MEMS) technology [14]. Despite 
these advances, the potential of accelerometers to capture 
BCG signals remains relatively underexplored and warrants 
further investigation [15]. 

This work attempts to investigate non-invasive HR 
monitoring using a contactless accelerometer-based system. 
The primary objective is to evaluate the effectiveness of the 
system in different sleeping positions and to validate its 
performance against PSG, with the goal of innovating 
unobtrusive vital signs monitoring in healthcare settings. 

The following sections explain the components of the 
proposed system, including autonomy, data acquisition 
methodology, signal processing algorithm, and experimental 
design. Each facet has been carefully developed to ensure 
robustness, accuracy, and practical applicability in real-world 
scenarios, offering potential advancements in patient care and 
chronic disease management. After that, the obtained results 
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are being discussed, and conclusions, as well as ideas for 
future work, are presented. 

II. METHODOLOGY 

The autonomous functionality of our system stands as a 
fundamental prerequisite, demanding self-sufficiency in both 
hardware and software components. This independence 
facilitates seamless data collection and processing without 
reliance on external equipment, ensuring affordability, high 
accuracy, and suitability for home use [16]. 

A. Data Acquisition 
The data acquisition segment includes two primary 

components: the mechanical structure (sensor mount and 
suspension) and the direct data acquisition. This mechanical 
unit consists of a bed frame mount and a spring steel plate 
(hanger) that houses the ADXL355z 3-axis accelerometer 
sensor [17]. This sensor, which has been validated for vital 
sign detection [18], provides a sampling rate of 62 Hz, which 
is considered sufficient for the objectives of this study. In 
addition, the ESP32 module was chosen for its compact size, 
cost-effectiveness, and storage capabilities using a micro-SD 
module along with Wi-Fi data transfer capabilities [19]. 

Strategic placement of the sensor is critical, and based on 
previous research on accelerometer applications in 
cardiorespiratory measurements, chest level emerged as the 
optimal position [20]. 

B. Signal Processing 
The signal processing algorithm is an integral part of the 

contactless HR monitoring system and includes several steps 
for HR estimation. First, motion artifacts associated with sleep 
position changes are minimized by excluding the first and last 
10 seconds of data for each position measurement. Next, offset 
reduction via mean signal amplitude subtraction and cross-axis 
signal magnitude calculation precedes BCG signal derivation 
through a Butterworth bandpass filter (6th order, range: 0.7 to 
3.25 Hz) for HR detection. Further enhancement with a 
symlets6 wavelet improves the quality of the processed signal, 
facilitating HR estimation through peak detection. In general, 
wavelet symlets are widely used in biosignal processing to 
effectively handle complex biological signals with varying 
frequencies and transient characteristics, including ECG 
analysis and feature extraction in medical data [21]. 

B. Experiment Design 
A standard wooden single bed was used in the experiment 

to ensure uniformity and reproducibility as well as standard 
foam mattress. Subjects were instructed to stay in four 
different sleeping positions - prone, right side, supine, and left 
side - designated P1 to P4, respectively. The experiment began 
in position P1 and ended in position P4, with subjects having 
a relaxation period of at least three minutes prior to data 
collection. 

Data collection in each position lasted 140 seconds, during 
which subjects were instructed to minimize movement while 
behaving naturally. A total of 10 participants were included in 
the analysis. The experiment would be stopped immediately if 
the subjects felt uncomfortable, prioritizing their well-being, 
which fortunately did not happen during the experiment. 

III. RESULTS 

A total of 10 subjects participated in the data collection 
phase, consisting of 5 males and 5 females, with a mean age of 
31.8 ± 8.6 years, a mean height of 175.0 ± 6.0 cm, and a mean 
weight of 79.1 ± 12.9 kg. Prior to participation in the 
experiment, all subjects provided informed consent by signing 
the required documents and were thoroughly informed of the 
specifics of the research. None of the subjects reported any 
known medical conditions, diseases, ongoing treatments, or 
medication use. 

Evaluation of the contactless HR monitoring system was 
performed by comparing the obtained HR values with 
reference data measured with a ECG system. Mean absolute 
error (MAE) was used as the primary evaluation metric. To 
facilitate HR analysis and MAE calculation, each signal epoch 
was segmented into 20-second intervals. Approximately 240 
segments, totaling 4800 seconds, were considered for further 
analysis, consistent with the experimental design described in 
the preceding sections and subsections (60 segments for each 
sleep position). Table 1 shows the MAE values, which are 
essential for assessing the performance of the HR monitoring 
system. 

 
TABLE I. MAE FOR HEART RATE ESTIMATION 

 

 Sleep Position 

Prone (P1) Right lateral 
(P2) Supine (P3) Left lateral 

(P4) 
MAE, 
bpm 2.95 2.78 3.34 3.07 

To assess the performance of the contactless system and to 
provide a comparative analysis with the ground truth, 
individual Bland-Altman analyses were performed for each 
sleeping posture. The results of these visualisations are 
presented visually in Figures 1-4 and allow detailed analysis. 

 

Figure 1. Bland-Altman plot for HR measurement in prone position 
applying symlets6 wavelet. 
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Figure 2. Bland-Altman plot for HR measurement in right lateral 
position applying symlets6 wavelet. 

 

Figure 3. Bland-Altman plot for HR measurement in supine position 
applying symlets6 wavelet. 

 
 

Figure 4. Bland-Altman plot for HR measurement in left lateral 
position applying symlets6 wavelet. 

 
The Bland-Altman analysis revealed remarkably accurate 

HR measurements across all observed sleep positions. 
However, this commendable accuracy was mainly observed 
within a specific HR range of [50; 90] bpm. Cases in which the 
HR exceeded 90 bpm indicated a slightly higher deviation in 
the performance of the algorithm between the reference and 
contactless systems. However, it's important to note that only 
limited data was available within this higher HR range, 
precluding a definitive statement regarding this observed 
trend. Further data collection within this HR range is 
warranted to conclusively support these initial findings. 

IV. CONCLUSION AND OUTLOOK 

The findings suggest that the non-contact system using 
accelerometer sensors is promising for heart rate (HR) 

monitoring achieving the MAE of about 3 bpm. Comparable 
accuracy to existing methods was observed [22]. This system, 
which uses both hardware and software components, has the 
potential to be a modern, user-friendly approach with 
advantages over traditional technologies. It operates 
autonomously under a bed, taking measurements 
unobtrusively, suggesting its potential applications in hospital 
settings, rehabilitation centres and even home environments. 
Coupled with its processing algorithm, the system offers 
advantages such as simplicity, cost-effectiveness, and non-
contact measurement capabilities. 

Nevertheless, the study carried out has several limitations, 
which are listed below: 

• The sample size includes a limited number of subjects, 
which may limit the diversity and representation of 
different demographic and physiological variations 
within the population. 

• Relatively short measurement periods were used, 
which may not capture long-term trends or variations 
in physiological parameters. 

• The study was conducted in a controlled laboratory 
setting, which may not fully replicate real-life 
conditions, thereby limiting the generalisability of the 
findings to real-life settings. 

• The age range of the subjects was limited to 31.8 ± 8.6 
years, which limits the applicability of the findings to 
broader age ranges and different demographic groups. 

Efforts to address these limitations in future research 
include expanding the pool of subjects to include different age 
groups, heights, and various other characteristics. In addition, 
hardware improvements are being pursued to improve signal 
quality and signal-to-noise ratio. For example, proposed 
improvements include upgrading the mechanical support to 
mitigate hanger drift, thereby refining signal quality and data 
accuracy during patient movement. 

In addition, future work aims to integrate this system and 
methodology into a comprehensive sleep monitoring 
framework, potentially in conjunction with algorithms 
proposed in [23]. This integration could provide a more 
comprehensive approach to sleep monitoring, potentially 
addressing some of the limitations observed in this study and 
broadening its applicability in real-world scenarios. This 
would allow for an improvement in sleep quality through the 
timely detection and treatment of disorders, thus leading to an 
enhancement in the overall health of the population [24]. 
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Abstract— The massive use of patient data for the training of 
artificial intelligence algorithms is common nowadays in 
medicine. In this scientific work, a statistical analysis of one of 
the most used datasets for the training of artificial intelligence 
models for the detection of sleep disorders is performed: sleep 
health heart study 2. This study focuses on determining whether 
the gender and age of the patients have a relevant influence to 
consider working with differentiated datasets based on these 
variables for the training of artificial intelligence models. 

 

I. INTRODUCTION 

 
Nowadays, the development of artificial intelligence 

algorithms has invariably influenced many fields of 
knowledge in industry and science [1]. In medicine, the 
application of artificial intelligence models for detecting and 
monitoring physiological events is becoming increasingly 
common [2-4]. These algorithms can handle both tabular data 
and complex data, such as time series. They are not only used 
to detect and monitor diseases but also medical solutions aimed 
at predicting these events to improve the results of treatment, 
surgery, or simply the prevention of more serious diseases [5]. 

Among the problems faced by using artificial intelligence 
in medicine is the well-known problem of black boxes, that is, 
the lack of transparency that the model provides after making 
the prediction [6]. On the other hand, a large number of 
devices apply artificial intelligence after collecting data from 
people who may or may not be sick people, along with the 
small number that these devices represent as certified medical 
devices [7]. Apart from these major drawbacks, if we go 
deeper into how these artificial intelligence models work, we 
will see that not always the amount of data used is sufficient, 
the quality of the data is far from ideal, and on the other hand, 
the null distinction between genders and age ranges when 
artificial intelligence algorithms are used for the detection of 
physiological events of interest [8-9]. This is even more 
worrisome when it comes to detecting and monitoring events 
related to sleep disorders [10]. 

Sleep disorders are highly correlated with age and the 
psychological and physical changes that people undergo as 
they get older. If we look at the scientific literature, there is 
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practically no distinction between men and women when it 
comes to the application of artificial intelligence algorithms in 
detecting sleep-related diseases [11-14]. 

Based on the above, this scientific work aims to analyze 
patients suffering from sleep apnea to study whether there are 
major differences between men and women along with age. In 
this way, it can be verified if it is necessary to adapt the 
artificial intelligence algorithms to work with gender and age 
ranges. For this purpose, 2651 patients from study 2 of the 
global sleep health heart study have been used. However, 
artificial intelligence is not applied throughout this scientific 
work. 

The study of the influence of age and gender on the 
severity of sleep apnea that the patient may have is something 
very relevant and should be clarified prior to the training of the 
artificial intelligence models. Therefore, at this initial stage of 
the study of this influence, no results are shown with deep 
learning models trained with gender bias in the data. 

II. MATERIALS AND METHODS 

For data analysis, data were obtained from the National 
Sleep Research Resource (NSRR), specifically from the 
repository Sleep Heart Health Study (SHHS). The Sleep Heart 
Health Study (SHHS) is a multicenter cohort study initiated 
by the National Heart Lung & Blood Institute to determine sleep-
related breathing disorders' cardiovascular and other 
consequences. In total, 6,441 men and women aged 40 years 
or older were enrolled between November 1, 1995, and 
January 31, 1998, to participate in SHHS Visit 1. During 
examination cycle 3 (January 2001 to June 2003), a second 
polysomnogram (SHHS Visit 2) was obtained in 3,295 of the 
participants [15]. 

 
Once the data were obtained, we worked with a Python 

programming language environment in Jupyter Notebook. 
Python libraries such as Numpy, Pandas, Scipy, matplotlib, 
seaborn, etc. were used for data analysis. Prior to the 
visualization of the results, the data was cleaned and 
processed. For this work, the features of age, gender, and 
apnea-hypopnea index were selected. 
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In order to conclude this study, the inclusion of graphs with 
statistical information is essential. This is because the large 
number of patients used is too large to simply use descriptive 
statistics without providing any visualization technique. As 
this study does not intend to go further with the study of model 
training outcomes with data divided between males and 
females, this study aims to understand how the sex and age of 
patients influence AHI. Therefore, graphs that include 
populations and AHI indices may yield deterministic 
information about the influence on sleep apnea detection. 

III. RESULTS 

As can be seen in Figure 1, the age range for men between 
55 and 65 years constitutes the largest population of men 
suffering from sleep apnea of any severity. However, for 
women, this is not the case, and the severity of apnea is more 
pronounced for women between 65 and almost 80 years of age. 
This fact does not imply that sleep apnea is accentuated for 
women as they age. However, it can be stated that women older 
than 70 who suffer from apnea are more likely to have more 
apnea events. 

 

Figure 1. Violin plot of the age and gender distribution of shhs2. The dashed 
line indicates the mean, and the dotted line is the standard deviation. 

 
In order to visualize the influence of age and gender on the 

detection of sleep apnea, a basic descriptive statistical 
analysis was performed, followed by several visualizations to 
study the data better. One aspect to remember is that the 
patient data used are age, apnea-hypopnea-index (AHI), and 
gender. In this sense, the age of the patients is 40 years and 
older, so there is a large bias in the data. Since we do not have 
data for patients under 40, this analysis does not represent a 
large part of the population. Therefore, despite not finding 
evidence to justify an increase in AHI in patients over the 
years, it cannot be affirmed that this is not the case due to the 
drawback above. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Scatter plot and Regression of the age and gender distribution of 
SHHS-2. The dashed line indicates the mean and the dotted line the 
standard deviation. 
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As seen in Figures 2 and 3, there is no evidence of gender 
predominance as a determinant in the development of sleep 
apnea. Apart from this, no scientific evidence shows that the 
older the person is, the greater the number of apnea events 
he/she achieves. 

 
Figures 1 and 2 show a certain tendency for men and women 

to have a higher AHI as age increases. However, it cannot be 
affirmed that this is always the case, and the positive 
correlation is not considered significant enough to confirm it. 
Apart from this, something that has already been mentioned is 
that SHHS-2 contains data from patients older than 40, which 
implies a large range of populations aged between 18 and 40 
years that have not been included in this study. Patients 
younger than 18 years are considered children. Artificial 
intelligence models should discriminate sleep apnea events 
regardless of patient age and gender based on the information 
included in this manuscript. Age and gender should not 
influence the decision-making of artificial intelligence 
models. Another aspect to consider is that some of the patients 
had other pathologies, which may act as a bias for decision-
making based on the study proposed here. 

 
In this matter, it seems that other decisions to be made 

before feeding the artificial intelligence algorithm for sleep 
apnea detection are more relevant than gender and age: the 
duration of the apnea events, whether the algorithms are 
trained with time windows of a certain duration or with 
complete time series, whether the patients suffer from other 
pathologies, the quality of the signals, number of artifacts, etc. 

 
A priori, the information extracted from this study may be 

relevant in developing artificial intelligence models for the 
detection of sleep apnea and its subsequent implementation in 
a portable monitor or clinical detection system. In this way, 
the inconveniences that exist during detection could be 
reduced. The fact that gender and age do not have a great 
influence when detecting sleep apnea events facilitates the 
development of these artificial intelligence models, which 
reduces the complexity of the process and subsequent 
decision-making by the doctors. 

 
Finally, it is worth highlighting that in order to clarify the 

fact that age and gender do not have a great impact on the 
development of artificial intelligence models for the detection 
of sleep apnea, more studies and a greater number of data with 
broader age ranges. 

IV. I. CONCLUSION 
Although the development of models is becoming 

increasingly common in the development  of devices  that 
detect sleep apnea; there is still insufficient evidence to 
demonstrate that it is unnecessary to classify training data by 
gender and age. The analysis shown here should be supported 
by future research. However, the large number of patient data 
used is a large enough sample to take the results into account. 
It cannot be stated that sleep apnea worsens with age and that 
there are large differences between men and women. 
Therefore, no gender and age distinction should be made in 

training artificial intelligence models. 
 

 
 
 

Figure 3. Scatter plot and Regression of the age and gender distribution of 
SHHS-2. The dashed line indicates the mean and the dotted line the standard 
deviation. 
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Assessing Body Position During Sleep Using FSR Sensors and 
Machine Learning Algorithms 
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Natividad Martínez Madrid, Reutlingen University and Ralf Seepold, HTWG Konstanz 

 
Abstract— This study investigates the application of Force 

Sensing Resistor (FSR) sensors and machine learning algorithms 
for non-invasive body position monitoring during sleep. 
Although reliable, traditional methods like Polysomnography 
(PSG) are invasive and unsuited for extended home-based 
monitoring. Our approach utilizes FSR sensors placed beneath 
the mattress to detect body positions effectively. We employed 
machine learning techniques, specifically Random Forest (RF), 
K-Nearest Neighbors (KNN), and XGBoost algorithms, to 
analyze the sensor data. The models were trained and tested 
using data from a controlled study with 15 subjects assuming 
various sleep positions. The performance of these models was 
evaluated based on accuracy and confusion matrices. The results 
indicate XGBoost as the most effective model for this 
application, followed by RF and KNN, offering promising 
avenues for home-based sleep monitoring systems. 

I. INTRODUCTION 
 

Cardiorespiratory monitoring is essential for evaluating 
sleep quality and diagnosing and managing sleep disorders. 
Polysomnography (PSG) [1,2] has traditionally been 
considered the most reliable assessment method, providing 
comprehensive insights into sleep-related cardiorespiratory 
functions. However, its invasive nature, cost, and complexity 
pose significant limitations, particularly for extended home-
based monitoring. 

 
Recent research has increasingly focused on using pressure 

sensors placed beneath the mattress as a non-invasive, cost-
effective, and user-friendly method for monitoring heartbeat 
and breathing rates [3, 4]. These sensors are pivotal in the 
evolving domain of home health monitoring. The potential of 
wearable sensors as a viable alternative to Polysomnography 
(PSG) in evaluating sleep quality, particularly in conditions 
such as obstructive sleep apnea, is underscored. 

 
This study further explores the application of Force 

Sensing Resistor (FSR) sensors [5], arranged under the bed in 
a triangular configuration [6, 7] to detect major body positions 
optimally. The research focuses on predicting sleeping 
positions using machine learning techniques, specifically the 
Random Forest (RF), K-Nearest Neighbors (KNN), and 
XGBoost algorithms, based on sensor data. The performance 
of these models is evaluated using accuracy as the key metric. 
The investigation involves meticulous stages of data 
preprocessing, processing, and analysis to make a 
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significant contribution to the field of non-invasive sleep 
monitoring technologies and methods. 

RF is an ensemble learning method primarily used for 
classification and regression [8]. It operates by constructing a 
multitude of decision trees at training time and outputting the 
class, that is, the mode of the classes (classification) or mean 
prediction (regression) of the individual trees. Each decision 
tree in a Random Forest splits the data into branches to make 
predictions, which are then aggregated to produce a more 
accurate and stable prediction. Random Forest is particularly 
effective due to its ability to handle large datasets with higher 
dimensionality and can estimate missing data while 
maintaining accuracy when a large proportion of the data is 
missing. 

 
KNN is a simple, non-parametric algorithm used for 

classification and regression [9, 10]. In KNN, the input 
consists of the k closest training examples in the feature 
space, where k is a positive integer, typically small. The 
output is a class membership for classification problems: an 
object is classified by a majority vote of its neighbors, with 
the object being assigned to the class most common among 
its k nearest neighbors. KNN is inherently a lazy learning 
algorithm, meaning it does not build a model explicitly but 
stores training data instances. Classification is computed 
from a simple majority vote of the k nearest neighbors of 
each point. 

 
XGBoost, short for Extreme Gradient Boosting, is an 

efficient and scalable implementation of a gradient boosting 
framework [11]. It utilizes gradient-boosted decision trees 
designed for speed and performance. XGBoost provides 
parallel tree boosting that solves many data science problems 
quickly and accurately. The core principle behind XGBoost 
is to build a series of weak learners (decision trees) 
sequentially, where each tree attempts to correct its 
predecessor's mistakes. The model adjusts for the errors of 
the previous trees in the series through a process called 
boosting, and the combination of these weak learners results 
in improved accuracy and robustness. 

 
II. MATERIALS AND METHODS 

A. Hardware setup 
Our research utilized a hardware setup designed for precise 

data collection using FSR sensors for sleep monitoring. The 
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core of this system consisted of three FSR 406 sensors. These 
sensors were strategically placed under the mattress in three 
positions -right, left, and center- to capture movements and 
pressure variations during sleep effectively. The system also 
included electronic components for signal amplification and 
conversion [12]. This involved two amplification boards and 
an Analog-to-Digital Converter (ADC) board, which converted 
analog signals from the sensors to digital format for easier 
processing. An IIC interfacing converter also connected the 
ADC to a Raspberry Pi 4B, chosen for its efficient processing 
capabilities [13]. The circuitry featured power supply 
stabilization, a voltage divider circuit with amplifier gain, and 
an active low-pass filter, essential for the system's stable 
operation [14]. An embedded system within the hardware 
setup was responsible for data collection and storage, 
ensuring systematic recording for subsequent analysis. 

B. Experiment design 
Our study aimed to gather 15 subjects to assess the 

accuracy of FSR sensors in sleep monitoring. During the 
sessions, participants assumed four common sleep positions: 
prone, right-lateral, supine, and left-lateral. Data was 
recorded for 20 minutes, ensuring comprehensive datasets. 
Participant comfort was prioritized, and sessions were 
terminated immediately if any discomfort was reported, 
ensuring participant safety and the integrity of the collected 
data. 

Data was collected using FSR sensors at a sampling rate 
of 160 Hz. 

C. Data Preparation and Model Evaluation 
 

In the preprocessing stage, the collected data was cleansed 
of motion artifacts. As part of data preprocessing, a 
windowing technique was employed to structure the dataset 
effectively for the machine learning models. A window 
length of 100 data points was chosen. This approach involved 
segmenting the data into overlapping windows, each 
encapsulating 100 sequential datapoints. 

 
For each window, we removed columns irrelevant to our 

analysis, such as time stamps, and appended the target 
variable indicating the sleeping position. The resulting data 
frame comprised columns named to reflect the value (v) and 
time point (t) within each window, leading to a format 
conducive for machine learning analysis. This method 
ensured that each window was treated as a distinct 
observation, aligning with the target position, facilitating 
more accurate modeling and prediction. 

 
In the next data preparation stage, the datasets were divided 

into training and testing sets to evaluate the machine learning 
models effectively. The training set included data from 12 
individuals, providing a robust basis for the models to learn 
and adapt to various sleep position patterns. The testing set, 
composed of data from 3 individuals, was used to assess the 
model's generalization capabilities and accuracy in unseen 
data scenarios. 

 
Before model training, the data underwent standardization 

using the StandardScaler. This step normalized the features 

within the dataset, ensuring that each feature contributed 
equally to the model training and reducing potential bias from 
varying scales of data values. 

 
For the machine learning models, we employed Random 

Forest with 50 estimators, K-Nearest Neighbors with 30 
neighbors, and XGBoost. Each model was trained on the 
designated training dataset, encompassing data from 12 
participants. The training process involved adjusting the 
models to recognize patterns and correlations pertinent to 
sleep position detection. Upon completing the training phase, 
the models were tested using a separate testing dataset from 3 
individuals. 

 
In the final stage of our analysis, we evaluated the 

performance of the machine learning models using two key 
metrics: accuracy and the confusion matrix. Accuracy 
provided a straightforward measure of the model's overall 
ability to correctly predict the sleep positions, calculated as 
the proportion of correct predictions to the total number of 
predictions made. On the other hand, the confusion matrix 
offered a more nuanced view by illustrating the specific types 
of errors made by the models. This matrix displayed the 
number of true positive, true negative, false positive, and false 
negative predictions for each sleep position, thereby giving 
insight into the models' strengths and weaknesses in different 
scenarios. 

 
III. RESULTS 

In the results section of this study, we critically analyze the 
performance metrics of three machine learning models: RF, 
KNN, and XGBoost. The evaluation focuses on the accuracy 
of each model in correctly classifying sleep positions, a 
fundamental aspect of our objective to advance sleep 
monitoring technologies. 

 
An accuracy comparison table (Table 1) summarizes the 

percentage of correct predictions made by each model. This 
quantitative analysis clearly indicates which model most 
effectively discerns between different sleeping positions, a 
key consideration in the practical application of these models. 

Table 1. Comparison table for models with their accuracy. 
 

Model Accuracy 

RF 57.74 

KNN 50.75 

XGBoost 60.05 

The Random Forest model, with an accuracy of 57.74%, 
shows a moderate level of effectiveness in predicting sleep 
positions. While it offers better accuracy than KNN in our 
study, it is not the most accurate model among the three. This 
performance suggests that while the ensemble method of 
Random Forest adds some robustness to the model, there may 
be complexities or nuances in the data it is not fully capturing. 

KNN's performance, with an accuracy of 50.75%, is the 
lowest among the three models. 
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This might indicate that the simplistic approach of KNN, 
which relies on proximity in the feature space for 
classification, may not be sufficiently sophisticated for the 
complexities of sleep position data. 
The choice of k (number of neighbors) and the distance metric 
used might also affect its performance. XGBoost shows the 
highest accuracy at 60.05%, indicating that its gradient-
boosting approach is more effective. The ability of XGBoost 
to build upon the errors of previous trees and its sophisticated 
handling of various data conditions might contribute to its 
superior performance in our study. Furthermore, we delve into 
the detailed outcomes of the models through confusion 
matrices (Fig 1). These matrices offer a granular view of the 
predictive performance, demonstrating the overall accuracy 
and how each model differentiates between the four classified 
sleep positions: prone, right-lateral, supine, and left-lateral. By 
presenting a confusion matrix for each model, we gain insights 
into the specific areas where each model excels or falters, 
providing a comprehensive understanding of their capabilities 
and limitations in sleep position classification. 

 

 

 

Figure 1. Confusion Matrix for RF, KNN, XGBoost 
 

The confusion matrices provided represent the 
performance of three machine learning models – Random 
Forest, K-Nearest Neighbors, and XGBoost – for 
classifying sleep positions into four categories: prone, right 

(right-lateral), supine, and left (left-lateral). 
The confusion matrix for the Random Forest model shows 

the highest correct classification rate for the right-lateral 
position, with notable weakness in distinguishing between the 
prone and left-lateral positions. This suggests that the RF 
model may be confusing these positions more frequently. The 
KNN model displays a spread of classification accuracy across 
all positions with notably lower performance than the RF 
model. The prone and left-lateral positions have the highest 
misclassification rates, indicating that the KNN algorithm 
struggles to differentiate between these positions    accurately. 

Lastly, the XGBoost model presents a more balanced 
classification with the highest accuracy in the right-lateral 
position classification. However, like the other models, 
XGBoost also shows some confusion between prone and left-
lateral positions,    though to a     lesser extent. These results 
suggest that in the context of our study, XGBoost is the most 
suitable model for predicting sleep positions, followed by 
Random Forest, with KNN being the least effective. It is 
important to consider that model performance can also be 
influenced by factors like data quality, feature selection, and 
hyperparameter tuning, which might need to be explored 
further for potential improvements. 

 
IV. DISCUSSION 

In this section, we reflect on the various aspects of our 
study, considering both the methodologies employed and the 
results obtained, and discuss potential avenues for future 
research. 

Firstly, the participant pool size was limited. While this 
was sufficient for an initial investigation, a broader dataset 
encompassing a more diverse range of individuals would 
enhance the generalizability of the findings. Expanding the 
sample size could provide a more comprehensive 
understanding of the models' performance across a wider 
spectrum of physiological variations inherent in a larger 
population. 

Secondly, the role of the window size in data preprocessing 
merits further exploration. The window length during the 
windowing process is a critical parameter that impacts the 
resolution of the time-series data. Adjusting the window size 
could potentially refine the models' ability to capture relevant 
features, and it would be valuable to investigate the effects of 
varying this parameter on model performance. 

The potential of advanced feature engineering also presents 
an exciting opportunity for improving model accuracy. 
Incorporating statistical measures, frequency domain 
features, time-domain features, wavelet-based features, and 
signal-shape features could provide deeper insights into the 
data. Conducting further research with these additional 
features would allow us to evaluate the extent to which they 
enhance the predictive capability of the models. 

Moreover, fine-tuning the hyperparameters of the machine 
learning algorithms is suggested. For the KNN model, 
experimenting with the number of neighbors (n_neighbors), 
and for the RF model, adjusting the number of trees 
(n_estimators) could lead to optimized performance. 
Determining the optimal values for these parameters is 
crucial for improving accuracy and should be a focal point of 
subsequent studies. 
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Lastly, transitioning towards deep learning models, such as 
convolutional neural networks (CNNs) and long short-term 
memory networks (LSTMs), could provide substantial 
benefits. These models have demonstrated exceptional 
capabilities in capturing complex patterns in high-
dimensional data, which could be particularly beneficial for 
sleep position classification tasks. Future research should 
explore the application of these deep learning architectures 
and compare their performance against the current models. 

 
V. CONCLUSION 

 
This study aimed to improve the precision of non-invasive 

sleep monitoring by using machine learning models to predict 
sleep positions from pressure sensor data. The study 
conducted accurate experimentation and analysis, revealing 
valuable insights into various algorithms' capabilities and 
limitations. 

The findings suggest that although models such as 
Random Forest, KNN, and XGBoost can provide acceptable 
accuracy, there is significant opportunity for improvement. 
Our investigation into the effects of data preprocessing, 
feature engineering, and model hyperparameters has 
established a basis for future research. 

Expanding the dataset and incorporating more advanced 
machine learning and deep learning techniques has the 
potential further to enhance the accuracy and reliability of 
sleep position classification. Integrating advanced feature 
extraction methods and fine-tuning model parameters is a 
promising direction for future studies. 

 
ACKNOWLEDGMENT 

This research was funded by the Carl Zeiss Foundation as part of the 
MORPHEUS project "Non-invasive system for measuring parameters 
relevant to sleep quality" (project number: P2019-03-003). 

 
REFERENCES 

[1] Hall, Andrew. "Sleep physiology and the perioperative care of patients 
with sleep disorders." BJA Education 15.4 (2015): 167-172. 

[2] Electronic resource. Psychiatry Data Base. Polysomnography (PSG) 
Access:https://www.psychdb.com/neurology/polysomnography#polys 
omnography-psg. Date of access: 10.04.2023. Author name / Procedia 
Computer Science 00 (2019) 000–000 9 

[3] Berry, R. B., Brooks, R., Gamaldo, C. E., Harding, S. M., Marcus, C., 
& Vaughn, B. V. (2012). The AASM manual for the scoring of sleep 
and associated events. Rules, Terminology and Technical 
Specifications, Darien, Illinois, American Academy of Sleep 
Medicine, 176, 2012. 

[4] Ibáñez, Vanessa, Josep Silva, and Omar Cauli. "A survey on sleep 
assessment methods." PeerJ 6 (2018): e4849. 

[5] Gaiduk, M., Kuhn, I., Seepold, R., Ortega, J. A., & Martínez Madrid, 
N. (2017, April). A sensor grid for pressure and movement detection 
supporting sleep phase analysis. In International Conference on 
Bioinformatics and Biomedical Engineering (pp. 596-607). Springer, 
Cham. 

[6] Seepold, Ralf, et al. "Identifying an Appropriate Area to Facilitate the 
Cardiorespiratory Measurement during Sleep Monitoring." 2023 45th 
Annual International Conference of the IEEE Engineering in Medicine 
& Biology Society (EMBC). IEEE, 2023. 

[7] Haghi, Mostafa, et al. "A triangle-shape region of interest in 
cardiorespiratory estimation during sleep monitoring." Current 
Directions in Biomedical Engineering. Vol. 9. No. 1. De Gruyter, 2023. 

[8] Breiman, Leo. "Random forests." Machine learning 45 (2001): 5-32. 
[9] Guo, Gongde, et al. "KNN model-based approach in classification." On 

The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and 
ODBASE: OTM Confederated International Conferences, CoopIS, DOA, 
and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. 
Proceedings. Springer Berlin Heidelberg, 2003. 

[10] Zhang, Zhongheng. "Introduction to machine learning: k-nearest 
neighbors." Annals of translational medicine 4.11 (2016). 

[11] Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting 
system." Proceedings of the 22nd acm sigkdd international conference on 
knowledge discovery and data mining. 2016. 

[12] Asadov, Akhmadbek, et al. "Performance improvement of 
cardiorespiratory measurements using pressure sensors with mechanical 
coupling techniques." Procedia Computer Science 225 (2023): 1891-1899. 

[13] Asadov, Akhmadbek, et al. Non-invasive cardiorespiration monitoring 
using force resistive sensor. Hochschule Reutlingen, 2022. 

[14] Boiko, Andrei, et al. "Gamification system to improve the personal health 
of bedridden patients in long-term care." German-Italian Workshop 
Social Innovation in Long-Term Care through Digitalization. Cham: 
Springer International Publishing, 2021. 



23 Models and Applications for Embedded Systems 

Comparative Study of Applying Signal Processing Techniques on 
Ballistocardiogram in Detecting J-Peak using Bi-LSTM Model* 

Oluwaseun Awonuga, Priyanka Chaurasia, Member, IEEE, Maksym Gaiduk, Member, IEEE, 
Natividad Martínez Madrid, Senior Member, IEEE, Ralf Seepold, Senior Member, IEEE, and 

Mostafa Haghi, Member, IEEE 
 
 

Abstract— Cardiovascular diseases (CVD) are leading 
contributors to global mortality, necessitating advanced 
methods for vital sign monitoring. Heart Rate Variability (HRV) 
and Respiratory Rate, key indicators of cardiovascular health, 
are traditionally monitored via Electrocardiogram (ECG). 
However, ECG's obtrusiveness limits its practicality, prompting 
the exploration of Ballistocardiography (BCG) as a non-invasive 
alternative. BCG records the mechanical activity of the body 
with each heartbeat, offering a contactless method for HRV 
monitoring. Despite its benefits, BCG signals are susceptible to 
external interference and present a challenge in accurately 
detecting J-Peaks. This research uses advanced signal processing 
and deep learning techniques to overcome these limitations. Our 
approach integrates accelerometers for long-term BCG data 
collection during sleep, applying Discrete Wavelet Transforms 
(DWT) and Ensemble Empirical Mode Decomposition (EEMD) 
for feature extraction. The Bi-LSTM model, leveraging these 
features, enhances heartbeat detection, offering improved 
reliability over traditional methods. The study's findings 
indicate that the combined use of DWT, EEMD, and Bi-LSTM 
for J-Peak detection in BCG signals is effective, with potential 
applications in unobtrusive long-term cardiovascular 
monitoring. Our results suggest that this methodology could 
contribute to HRV monitoring, particularly in home settings, 
enhancing patient comfort and compliance. 

 

I. INTRODUCTION 

An individual's health assessment significantly relies on 
the fundamental vital signs of cardio-respiratory activity, as 
established by notable sources. Cardiovascular diseases 
(CVD) currently stand as the leading cause of mortality 
worldwide, claiming approximately 17 million lives annually. 
To mitigate this mortality rate, clinical and research studies 
emphasize the importance of monitoring vital signs, 
particularly Heart Rate Variability (HRV) and Respiratory 
Rate, critical cardiovascular health indicators [1]. 

HRV is a way to measure the changes in the time between 
consecutive heartbeats. As the heart beats, a temporary 
interval exists before the next beat. HRV is a popular method 
extensively used by clinical researchers as a metric for 
noticing how these intervals change from one beat to the 
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following [2]. HRV is a pivotal physiological phenomenon 
proven to be a discernible marker of the functional dynamics 
of the autonomic nervous system (ANS). The ANS exerts 
control over an array of involuntary physiological functions, 
encompassing heart rate modulation, respiration, and 
digestion [3]. Traditionally, this heart variability manifests as 
oscillations in the temporal intervals between sequential R- 
peaks (prominent peaks) observed in a cardiac cycle on an 
electrocardiogram (ECG) signal [4]. 

The R-R interval (changes in the time between 
consecutive R-peaks) in ECG is widely known as the gold 
standard for HRV monitoring, with monitoring experiments 
conducted either in the short term (5 mins) or in the long term 
(24 hrs). The ECG recording is an obtrusive method that 
involves multiple physiological sensors attached to a patient's 
body to record several body functions during sleep, such as 
breathing patterns, sleep stages, heartbeats, and body 
movements. Although ECG short-term HRV monitoring is 
the most commonly used HRV monitoring approach because 
it is relatively easy to obtain, long-term HRV monitoring 
offers the opportunity for predictive performance in detecting 
symptoms or categorizing patients with CVDs [5]. Despite 
the feasibility of the ECG in presenting real and accurate 
information about vital sign monitoring and associated 
physiological functions, it introduces limitations like 
discomfort (due to prolonged periods of direct contact of the 
sensor to the skin) and complexity in setting up the 
experiment. As a result, this has led to the demand for 
inexpensive and scalable non-obtrusive methods suited for 
both long-term and short-term cardiac activity monitoring 
experiments [6]. 

Recently, researchers have proposed ballistocardiograph 
(BCG) as an alternative means of unobtrusive and non-
invasive HRV monitoring. BCG is a contactless method of 
recording the mechanical activity of the body with each 
heartbeat. The cardiac activity of the heart causes 
microforces to be generated as blood is pumped throughout 
the body. BCG is a recording of these micro-movements, and 
it is usually employed with other sensing methods that 
measure sensor readings of displacement, pressure, force, or 
acceleration [7]. A major merit of BCG is that the recording 
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system can be set up in users’ homes without interrupting the 
user’s privacy or lifestyle activities. Also, BCG can be scaled 
toward experiments related to sleep monitoring and sleep-
disordered breathing [8]. In a BCG recording, the HRV 
manifests as oscillations in the intervals between sequential J- 
peaks (prominent peaks) observed in a cardiac cycle on a BCG 
signal. The changes in the time between consecutive J-peaks 
are known as the J-J interval. The J-J interval (JJ-I) is similar 
to the R-R interval (RR-I) in ECG. 

While offering insights into mechanical heart activity, the 
BCG technique has certain limitations. Firstly, BCG signals 
can be affected by external movements or vibrations, which 
can introduce noise into the BCG signal, making it 
challenging to detect J-peak, which is essential in extracting 
cardiac signals for HRV evaluation. Also, the output of BCG 
signals is a composite signal consisting of cardiac activities, 
respiration, and muscle activity; therefore, advanced signal 
processing techniques are needed to separate the signals and 
extract meaningful information for HRV analysis and 
heartbeat detection [9]. 

Recent studies have shown the application of signal 
processing and machine learning algorithms for signal 
decomposition, feature extraction, and heartbeat detection 
using BCG signals. Chen et al. proposed using four 
piezoelectric sensors: one under the pillow and three under the 
mattress, and the data was gathered from five healthy 
participants in their twenties during a 2-hour nap. ECG and 
nasal thermistor signals were reference points for heart rate 
and respiration. Employing Cohen–Daubechies–Feauveau 
biorthogonal decomposition, heart rate was calculated by 
finding the 6th level approximation waveform, which 
matched the respiratory rhythm. Heart rate detection was 
effective using a combination of the 4th and 5th scale 
coefficients [10]. C.H. Antink investigated the viability of 
using BCG for post-surgical patient monitoring by comparing 
beat-to-beat intervals and ultra-short-term HRV with ECG 
references [11]. In another study, Katz et al. utilized a contact- 
free piezoelectric sensor beneath the mattress to measure 
cardiac interbeat intervals. Data from 25 home sleep 
recordings involving 14 healthy subjects in a two-in-bed setup 
were collected. The methodology included three algorithms: 
first, using empirical mode decomposition to locate candidate 
peaks for interbeat intervals; second, classifying intervals into 
three groups using binomial logistic regression based on 
ballistocardiogram signal properties; third, creating discrete 
interbeat interval distribution maps through overlapping 15- 
minute windows during night recording. These algorithms 
collectively affirmed the system's efficacy for heart rate 
variability analysis [12]. 

Rosales et al. utilized hydraulic transducer sensors to 
measure heart rate, employing a clustering-based approach for 
heartbeat computation. Data were gathered from four subjects 
in a supine position for six minutes. Filtering and feature 
extraction were applied to transducer signals. Extracted 
features were classified into two groups using k-means 
clustering. Heartbeat positions were compared to a reference 
signal from a finger-worn device. While the clustering 
approach showed promise, its applicability may be limited to 
specific situations and could require manual data labeling for 
practical implementation [13]. In 2021, researchers C. Jiao 

et al. introduced a bidirectional long short-term memory 
regression network to estimate non-invasive heart rates using 
BCG signal [14]. Akhbardeh et al. employed supported 
wavelet and biorthogonal wavelet transforms to extract key 
features from BCG signals. Thereafter, neural networks and a 
supervised fuzzy adaptive resonance theory were applied to 
classify healthy and heart disease subjects based on these 
features [15 – 16]. In a study by Yu et al., wavelet multi-
resolution analysis was applied to extract wavelet coefficients 
from the BCG signal. Subsets of these coefficients were 
employed as features for neural network-based classification 
of normal and cardiovascular disease subjects [17]. 

As a result of the difficulties in detecting the J-peak in 
long-term monitoring, most of these methods have focused on 
HRV estimation based on BCG feature extraction. Few 
methods currently involve using advanced signal processing 
techniques and deep learning to determine heartbeat or beat-
to-beat normality in patients for a given long and short-term 
HRV monitoring experiment during sleep. This study 
employs accelerometers to collect BCG data for long-term 
HRV monitoring of 20 patients during sleep. A deep learning 
approach is introduced utilizing bidirectional long short-term 
memory (Bi-LSTM). The method enhances heartbeat 
detection in comparison with earlier studies through: 

• Combining discrete wavelet transforms (DWT) for 
converting BCG time series into the time-frequency 
domain for feature extraction. 

• Implementing ensemble empirical mode 
decomposition (EEMD) parallel with DWT for HRV 
feature detection from smoothed BCG cardiac 
signals. 

• Utilizing the Bi-LSTM model that benefits from 
both DWT and EEMD, using time-scale segmented 
smoothed BCG signals and HRV features to detect 
J-peaks 

• Employing J-J Intervals variation from DWT and 
EEMD as target labels, comparing prediction results 
across different sleeping positions to assess model 
efficiency. 

 
 

II. MATERIALS AND METHODS 

A. BCG Data Preprocessing 
The preprocessing phase of BCG data entailed an intricate 

series of steps to ensure the accuracy and reliability of 
subsequent HRV analysis. This phase lays the foundation for 
accurately interpreting physiological patterns during sleep. In 
the pursuit of unobtrusive monitoring of HRV during sleep 
using BCG signals, the initial step involves the meticulous 
preprocessing of the acquired accelerometer readings 
captured as BCG data using three sensors (sampled at 50 Hz), 
are synchronously recorded alongside ECG measurements 
(sampled at 256 Hz) during sleep sessions. The raw BCG and 
ECG data are stored in discrete 3-minute segments to facilitate 
accurate analysis, forming the foundation for subsequent 
processing stages. 

From the raw data, three distinct signals emerge: body 
movement, heartbeat, and respiration. However, the presence
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of body movement presents a significant challenge to the quality 
of physiological signals; therefore, extracting respiratory signals 
becomes a pivotal step for the successful removal of body 
movement artifacts. This is accomplished by applying a 3rd-
order Butterworth bandpass filter, effectively isolating the 
relevant frequency range for respiration. The lower and upper 
cutoff frequencies of the filters are carefully set at 0.5 Hz and 
10 Hz to capture the respiratory components while eliminating 
undesired frequencies. Second, the median filter is used to 
suppress the baseline drift of the BCG signal. Finally, a cross-
correlation function is used to solve the problem of the signal's 
peak not being prominent after the median filter to enhance the 
quality of the signals further. The introduction of an amplitude 
threshold becomes imperative. This threshold serves the 
purpose of identifying and addressing the saturated signal 
segments resulting from abrupt motion artifacts. By 
strategically setting the threshold, the signal's integrity is 
preserved, minimizing distortion caused by extreme motion-
induced fluctuations. In the pursuit of comprehensive signal 
analysis, a normalization process is introduced. This step 
involves subtracting the mean value of the signals and 
subsequently normalizing each channel by dividing it by its 
standard deviation. This normalization process aims to 
accentuate the signal's shape and characteristics, shifting the 
focus from absolute values to the underlying signal dynamics. 

B. BCG Data Decomposition 
For an efficient, unobtrusive monitoring of HRV using 

BCG signals, the process of BCG data decomposition forms a 
critical component of the methodology. This section focuses 
on extracting vital respiratory and heart activity signals 
through the DWT to unveil the underlying physiological 
dynamics. 

The accelerometer signals, captured in three dimensions 
(xyz axis), assume prominence as the z-axis comes into focus. 
This axis, corresponding to the heart's pumping motion, 
serves as the key determinant for signal analysis [17]. After 
identifying and eliminating artifacts, the subsequent phase 
involves the extraction of respiratory and heart activity 
signals, achieved through two distinct wavelength 
decomposition techniques—Wavelet Decomposition and 
EEMD. The foundation of the BCG data decomposition rests 
on the DWT, functioning as a digital filter bank comprising 
high-pass (HPF) and low-pass (LPF) filters. These filters 
operate in tandem, cascading from high to low frequencies, 
effectively decomposing the BCG signal into detail 
coefficients (dj) and approximation coefficients (aj) across 
different scales (j levels). For the context of this research, a 
meticulous decomposition at j = 8 levels has been undertaken 
[12]. In this endeavor, the selection of the wavelet basis 
function holds paramount significance. While the daubechies, 
sym4, and biorthogonal wavelets find common application, 
the biorthogonal (bior3.9) wavelet is harnessed for its 
exceptional symmetrical signal properties. Despite a potential 
energy trade-off, adopting this wavelet ensures precise signal 
reconstruction and positional accuracy, thus enhancing the 
overall fidelity [18]. The values of wavelet coefficients, 
comprising both approximation (aj) and detail (dj) 
coefficients, play a pivotal role in expressing the outcome of 
BCG signal decomposition. This representation emerges 

through the calculation of inner products represented by the 
equation 

dj,(k) = [ (x(l), Ψj,k (l) ] (1) 

aj.(k) = [ (x(l), Φj,k (l) ] (2) 

This inner product Ψj.k(l)	 and	 Φj.k(l)	 are	 scaled	 and	
dilated	versions	of	the	basis	functions	(Daubechies	type)	
associated	with	HPF	and	LPF	 impulse	 response,	effectively 
encapsulating the underlying physiological patterns within the 
signal structure. The extracted respiratory (Resp(n)) and 
(Heart(n)) signals, emerging as the outcome of the DWT- 
based decomposition, find their digital form representation. 

Ψj.k(l) =2-j /2 Ψ(2-jl − k) (3) 

Φj.k(l) =2-j /2 Φ(2-jl − k) (4) 
The acquired Resp(n) and Heart(n) waveforms will 

undergo processing to facilitate the extraction of crucial 
respiration rate and heart rate values, subsequently subjected 
to a rigorous comparison with measurements obtained 
through reference measurement equipment. 

The BCG signal for subject 1 in the supine position was 
used as the case study for the DWT decomposition. DC-3 
contains noise, making it hard to accurately distinguish all the 
J-J intervals. Also, DC-5 loses a part of the contour and peak 
point information. Meanwhile, the DC-4 contains greater 
signal contour information but does not lose peak point 
information. Therefore, DC4 is better than other 
decomposition components to obtain the J-J intervals. 
However, it is recommended that in obtaining J-J intervals, 
utilizing simply one stationary component (e.g., DC-5) of the 
decomposition components is not advisable [19]. Therefore, 
the heart rate signal will be obtained from a combination of 
different decomposition components (DC-3 and DC-4) within 
the usual frequency spectrum for a heart rate signal of 0.6 – 
3.5 HZ. 

The reconstructed signal (DC3 + DC4) was used as a heart 
rate signal for estimating HR respectively with the BCG 
signal. It was observed that the reconstructed signal for each 
sleeping position contained noise and loss of peak 
information. Therefore, the moving average smoothing filter 
of window = 10s using the Savitzky-Golay filter is applied to 
the cardiac signal to filter out the noise and distinguish the J- 
peak. Careful examination was taken to ensure the window 
size did not blur rapid changes or small details in the signal. 
The window size was set to 10 to ensure we consider an equal 
number of data points with peak information on each side of 
the current point within the 12 sec time domains. In Fig. 2 
above, the reconstructed signal of the subject in lateral 
positions shows a better cardiac waveform and a smoother 
level coefficient with J-peak information in contrast to the 
results in the other 3 sleeping positions, however, it can be 
observed that the J-peak in the lateral position BCG cycle may 
be submerged in the nearby peak, especially in lateral which 
would bring difficulties to the labelling the data using the J-J 
intervals. 

In applying the alternative method using EEMD, the goal 
is to deal with noise present in BCG signals and provide a 
solution to limitations inherent in the conventional ensemble 
mode decomposition (EMD). The EEMD is an innovative
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technique representing an advancement over the conventional 
EMD method. EMD breaks down complex and changing 
signals, like BCG signals, into intrinsic mode functions (IMFs). 
These IMFs serve as building blocks that capture the underlying 
dynamics of a signal in its simplest forms within the time 
domain [20]. 

However, EMD faces challenges such as "end effects," 
which distort results at the signal's endpoints, and "mode 
mixing," where oscillations of varying amplitudes interfere 
with one another. To tackle these challenges, EEMD 
combines the EMD process with a multitude of signals 
augmented by white Gaussian noise (WGN). This ensemble 
approach utilizes the way EMD filters signals to overcome 
mode mixing issues effectively. The process involves: 

• Adding controlled noise to the signal, breaking down the 
signal with EMD, 

• Repeating these steps with different noise series 
leads to a set of IMF averages. 

This ensemble technique mitigates the mixing 
phenomenon inherent in EMD, ensuring the accurate 
extraction of key metrics like JJ intervals, which play a crucial 
role in heart rate variability analysis. It is observed that J-
peaks become prominent from IMF4 to IMF7. It can be seen 
that the decomposition levels above IMF7 have a low-
frequency spectrum and generally lose peak information, 
which makes them unusable for estimating heart rate and 
respiration rate values. On the other hand, IMF4 and IMF7 
contain a part of peak point information, making it hard to 
distinguish all the J-J intervals accurately. Meanwhile, the 
IMF5 and IMF6 contain greater signal contour information 
and don't lose peak point information. Therefore, both IMF5 
and IMF6 are better than other decomposition components to 
obtain the J-J intervals. Similarly, in obtaining J-J intervals, 
utilizing simply one stationary component (e.g., IMF5) of the 
decomposition components is not advisable [19]. Therefore, 
the heart rate signal will be obtained by combining IMF4 with 
IMF5 and IMF6 because it has a strong weight of 3Hz, which 
is within the usual frequency spectrum for heart rate signals. 

 
C. J-Peak Detection 

A critical aspect of our methodology is the local peak 
detection algorithm. We introduce a distinctive approach for 
accurate J-peak identification. First, a moving average 
smoothing filter underwent a parameter tuning of window = 
3s and 25s using the Savitzky-Golay filter for the DWT and 
EEMD reconstructed cardiac signal to filter out noise and 
distinguish the J-peak. Next, we define a recommended 
minimum peak-to-peak distance of 30 milliseconds, which is 
derived from visual observations of the peak-to-peak 
distances between using reference ECG R-peaks. This 
distance is tuned so that detected J-peaks are suitably spaced 
apart, enhancing the reliability of the analysis. To implement 
this method, a local peak detector is employed to analyze the 
derivative of the reconstructed cardiac signal. This detector 
identifies explicitly local peaks, which are characteristic of J-
peaks. The reliability of this methodology is further 
confirmed through the synchronization. 

D. Data Labelling and Bi-LSTM 

This section outlines the methodology of data labeling and 
the implementation of a Bidirectional Long Short-Term 
Memory (Bi-LSTM) model. The goal is to leverage DWT and 
EEMD to extract HRV features from BCG signals and 
subsequently employ a Bi-LSTM model for heartbeat 
extraction and HRV analysis. This section entails several key 
steps that culminate in creating and utilizing an effective 
predictive model. 

 
• Time-Scale segmentation and candidate J-Peak labeling: 

From Fig. 2 above, there is no exact one-to-one 
correspondence between the R peak and the J peak in the time 
domain, and this could cause difficulties when labeling the 
data for data modeling and heartbeat extraction. Therefore, the 
signal of interest (ROI) is introduced for labeling the J-peak. 
The sampling points surrounding the reference R-peaks are 
labeled as J-peak. A label of '0' is set if the variation between 
consecutive BCG heartbeats is less than the width of the 
region of interest. However, if the width interval exceeds the 
signal of interest, the data is labeled as '1'. The threshold of 
probability is set at 0.5. 

 
• Feature Extraction: 

In modeling the Bi-LSTM network, the forward and 
backward features of a moving 3s sliding period, the BCG 
signals are fed as input data into the model. The forward and 
backward features are extracted from a signal length of 12s 
and 30s using the DWT and EEMD cardiac signals 
respectively. As a result of shift variant property limitation in 
DWT, which downsamples the raw signal, causing a 
reduction in sample size of the coefficient by 2, the extracted 
sample size for the heart rate signal is decomposed to a 12s 
window. However, since long-term HRV monitoring offers 
the opportunity for predictive performance in heartbeat 
detection, a thirty-second time scale was considered using 
EEMD cardiac signal for model evaluation. The target data is 
the variation (seconds) of consecutive beat-to-beat J-J 
intervals within the entire duration of the cardiac signal. A 
central timestamp of the window is determined as the 
midpoint between the start and end timestamps of the cardiac 
signal, which is crucial for synchronization. As data within the 
defined window is extracted, the model creates a windowed 
synchronized cardiac signal as input and corresponding 
output, which is the variation between consecutive J-J 
intervals at the start and end timestamp of the 3s sliding 
window. 

 
• Bi-LSTM model architecture: 

The Bi-LSTM architecture is pivotal in extracting temporal 
patterns from BCG signals and predicting heartbeat intervals. 
The Bi-LSTM model, a variant of the Long Short- Term 
Memory (LSTM) network, possesses the unique ability to 
capture both forward and backward temporal dependencies 
within sequential data. In the context of HRV analysis, the Bi- 
LSTM architecture is a powerful tool to predict heart rate 
abnormality by comparing BCG signal-derived J-J intervals 
(JJIs)  with reference R-R intervals (RRIs) obtained from 
ECG measurements. The proposed Bi-LSTM model leverage
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TABLE I. COMPARISON OF AVERAGE BPM USING DWT AND EEM TABLE II. BBI VARIATION COMPARISON BETWEEN ECG AND BCG 

 
  

Subject 
Left Lateral Right Lateral Supine Right Lateral 

 
 

Right Lateral 

(average bpm) (average bpm) (average bpm) DWT BBI EEMD BBI 

 

 ECG BCG ECG BCG ECG BCG  ECG (RRI) BCG (JJI)  ECG (RRI) BCG (JJI) 

1 66.6 76.1 74.3 66.1 68.4 76.6  0.76 0.72  0.76 0.92 

2 63.5 63.9 68.6 69.3 63.2 60.0  0.74 1.02  0.74 0.9 
3 60.2 73.4 66.7 63.9 61.6 64.2  0.76 0.74  0.76 0.92 
4 58.0 64.3 61.8 59.1 57.7 62.0  0.76 1.32  0.76 0.88 
5 60 65.0 58.5 69.3 61.7 77.5  0.75 0.68  0.75 1.34 
6 69.6 66.1 67.3 64.0 72.1 59.2  0.73 0.86  0.74 1.0 

7 64.7 70.0 68.5 66.5 68.0 69.3  0.73 1.08  0.73 0.9 
8 65.2 60.4 67.2 60.6 64.3 63.8  0.76 0.76  0.76 0.84 
9 68.5 73.0 77.3 71.5 78.4 70.0  0.76 0.6  0.76 1.04 

10 68.5 53.8 77.3 67.9 78.4 74.0   0.76 0.6    0.76 0.94  

 
large time-scale segments of BCG signals. These segments 
encapsulate multiple heartbeat intervals and serve as the input 
to the network. By considering both forward and backward 
temporal characteristics, the Bi-LSTM effectively captures the 
rhythmic features present within BCG signals [13]. This enables 
the model to learn complex patterns and relationships within the 
data. The Bi-LSTM architecture comprises two main 
components: a sequential class model and a Bi-LSTM model. 
The sequential class model processes the large time-scale 
segment to extract spatial characteristics, particularly the rhythm 
features inherent in BCG segments across multiple heartbeat 
intervals. The output of this model is a feature matrix that 
captures important spatial patterns. The Bi-LSTM model, on the 
other hand, focuses on capturing temporal dependencies of 
feature sequences extracted by the sequential class model. It 
involves a single layer of Bi-LSTM units, with each unit 
containing 128 neurons. This layer is instrumental in 
memorizing the context of the input time signal, enhancing the 
network's ability to understand temporal relationships within the 
data. The Bi-LSTM model's mathematical formulation involves 
a series of transformations: 

y = f(W * x + b) (5) 

Where: 

• y is the output of the model 
• f() represents the activation function, commonly the 

rectified linear unit (ReLU) function 
• W denotes the weight matrix of the model 
• x signifies the input data 
• b refers to the bias term of the model 

 
The ReLU activation function introduces non-linearity 

into the model. It maps positive inputs to themselves and 
negative inputs to zero, allowing the network to capture 
complex relationships. The weight matrix, W, encodes the 
connections between neurons, determining the flow of 

information through the network. The bias term, b, adjusts 
the output of the model. 

To train the Bi-LSTM model, 10 k fold cross-validation 
strategy is adopted because it provides a balance between the 
bias of a single train-test split (which might not be 
representative of the entire dataset) and the high 
computational cost of leave-one-out cross-validation (where 
each data point is treated as a test set) [21]. The Mean Square 
Error (MSE loss) serves as the optimization objective, and the 
Adam algorithm functions as the optimizer. A learning rate of 
0.0003 facilitates efficient convergence and accurate 
prediction [19]. 

The Bi-LSTM model is trained using the labeled DWT 
and EEMD datasets associated with subjects 1,2,3,4,5,6 and 
7. The efficiency of the trained Bi-LSTM model is evaluated 
using subjects 8,9 and 10. The model's predictive capabilities 
are tested on these separate datasets to assess its accuracy in 
detecting actual J-peaks from DWT and EEMD cardiac 
signals. 

 
III. RESULTS 

The proposed heartbeat detection scheme was conducted 
by conducting an experiment using 3 minutes and 30 
seconds of BCG signals measured from 14 subjects. 
BIOPAC MP160 simultaneously recorded ECG signals as a 
reference. In this research context, The BCG signals of 10 
subjects were used for HR analysis to validate the measure 
of agreement of BCG and ECG heart rate in line with 
clinical research ground truth HR values varying between 
60-100 beats per minute [22]. 

 

A. HRV Time Domain 

The table above shows each subject's average beats per 
minute using cardiac signals. The extraction of these 
features was implemented under a 12s window. Table 1 
above shows that in the "Right Lateral" sleeping position,
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the DWT average beats-per-minutes (bpm) generally show good 
agreement with the ground truth ECG, with relatively small 
differences. This suggests that the DWT approach performs well 
in this right lateral position and can provide accurate bpm 
estimates. 

In contrast, there is more variability in the "Left Lateral" 
and "Supine" sleeping positions. In some cases, the DWT 
bpm values are close to the ECG values (e.g., Subject 6 in 
all sleeping positions), while in others, there are larger 
values (e.g., Subject 5 in all sleeping positions). The data 
shows that bpm values can vary significantly based on body 
position. For example, in Subject 7, there is a notable 
difference in bpm between the Right Lateral and Supine 
positions for both ECG and BCG HR values. Generally, the 
bpm estimates using DWT show a good degree of 
consistency across different sleeping positions for each 
subject. In addition, the bpm values tend to follow a similar 
increasing or decreasing trend as the ground truth ECG- 
average bpm values. 

Table 1 shows that the EEMD-derived bpm values 
exhibit subject-specific variability - each subject has a 
unique response to different sleeping positions, resulting in 
varying HR values. The EEMD-derived bpm estimates are 
sensitive to sleeping positions. Several subjects show 
variations in HR values when transitioning 

between sleeping positions. For example, Subjects 4 and 8 
have relatively stable HR across positions, while Subjects 5 
and 9 display significant variability. Also, the EEMD-derived 
HR values often deviate from reference values, with varying 
degrees of difference across subjects and positions. 

In contrast to the DWT, the EEMD-derived bpm estimates 
tend to be lower than the corresponding ground truth ECG 
heart rate values for most subjects and positions. This suggests 
that EEMD may underestimate Heart Rate values compared 
to DWT. Although the DWT-derived HR values also exhibit 
variability, similar to EEMD, DWT tends to exhibit greater 
consistency and agreement with reference HR values across 
subjects and positions. This might result from DWT 
robustness against noise and baseline drift, reflected in the 
smoother bpm estimates and smoother and more stable bpm 
trends. 

The inter-beat intervals using BCG were derived for each 
subject using the simple peak detector algorithm. The 
threshold for the peak distance was set by observing the 
periodicity trend of beat-to-beat intervals with reference ECG. 
Table 2 above shows ten (10) consecutive beat-to-beat 
intervals for Subject1 derived using DWT and EEMD Heart 
Rate signals. From the table above, it was observed that the 
inter-beat interval shows a consistent time interval of 0.76s 
with reference ECG. In addition, the variation between 
consecutive heartbeats was 30 milliseconds (0.03s). In 
contrast, the variation in consecutive heartbeat intervals with 
DWT is within the range of 0.1 to 0.6s (100 – 600ms), while 
the time interval for consecutive heartbeat is between 0.6 and 
1.3 seconds. For EEMD, the variation between consecutive 
heartbeats was observed to be within 0.1 to 0.3s (100 – 
300ms). It can also be observed that in beat-to-beat intervals 
with EEMD and DWT, the heart rate signal had a deviation 
interval of 1.3sec between consecutive heartbeats, which, 

according to clinical researchers [19], is an anomaly because 
it exceeds the recommended heartbeat interval of 0.8s – 1.2s. 
Therefore, during time domain analysis, heartbeat intervals 
exceeding this recommended range will be omitted. HRV 
time domain features extracted will be evaluated using a 
short-term (12-second) window. The time-domain variability 
to be measured is the Mean of a normal heartbeat interval 
(Mean_NN) and standard deviation of normal heartbeat 
intervals (SDNN). Three subjects (subjects 1, 4, and 8) were 
selected for the purpose of analyzing the time domain 
variability across different sleeping positions (Supine, Left 
Lateral, and Right Lateral). 

 
TABLE III. HEART RATE TIME DOMAIN ANALYSIS FOR SUBJECTS IN 
SLEEPING POSITIONS 

 

Subject Sleeping 
                       Position  Technique BCG 

SDNN  
ECG 

SDNN  
BCG 

meanNN  
ECG 

meanNN  
1 Right DWT 0.20 0.02 0.84 0.76 
1 Right EEMD 0.18 0.02 0.92 0.76 
4 Left DWT 0.19 0.05 0.85 0.87 
4 Left EEMD 0.21 0.05 0.96 0.87 
8 Supine DWT 0.13 0.06 0.81 0.66 

  8  Supine  EEMD  0.22  0.06  0.83  0.66  
 
 

Table III above shows that the ECG-derived SDNN values 
are consistently lower than BCG-derived SDNN values for all 
subjects, techniques, and sleeping positions with a variation 
of 30 milliseconds. This suggests that the average peak-to-
peak distance between consecutive R-peaks in the ECG signal 
falls within the 20–60 milliseconds range, depending on the 
sleeping position. On the other hand, the BCG SDNN tends to 
be higher than ECG-reference values in most cases for all 
subjects, indicating that BCG may result in longer beat-to-
beat intervals on average with a minimum beat-to-beat 
variation of 130 milliseconds. Sometimes, there is variation 
between consecutive heartbeats reaching 500 – 600 ms. 

Overall, the average heartbeat interval of both ECG and 
BCG seems to have a close agreement regarding the actual 
beat-to-beat time interval; however, in most cases, BCG 
captures wide variability in interval periods while ECG 
tends to have a consistent time interval. The Coverage (CR) 
performance indicator was analyzed to derive the 
percentage of J-J intervals, which was successfully aligned 
with corresponding ground truth RR intervals. The coverage 
formula is defined below 

CR = (Number of Matched JJI / Total Number of RRI) * 100% 
(6) 

Coverage is an important metric in assessing the 
accuracy and reliability of a DWT and EEMD method in 
deriving beat-to-beat intervals, as it provides insights into 
how well the derived intervals correspond to the ground 
truth intervals. The average beat-to-beat interval error is 
used to measure how accurately both signal processing 
methods capture the timing of heartbeats between the J-J 
interval and the ground truth R-R interval. Since beat-to-
beat interval measurement is essential for diagnosing heart 
conditions like arrhythmias, which involve irregular 
heartbeats, understanding the error is critical in clinical 
applications. 
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Figure 1. Coverage analysis of heartbeat interval using DWT and EEMD. 
 

There is significant variability in coverage between 
DWT and EEMD for each subject in the right lateral 
position. DWT tends to have higher CR for subjects 1, 4, 
and 8, while EEMD performs slightly better than DWT for 
subject 10. Both methods are relatively close in CR subject 
10. The trends in the coverage results suggest that the EEMD 
method performs better at estimating the J-J interval from 
the R-R interval for subjects with more regular heartbeats 
(subjects 1,8 and 10). Similarly, the DWT CR suggests that 
this technique could better estimate the J-J interval from the 
R-R interval for subjects with more irregular heartbeats 
(subject 4). Generally, DWT shows higher CR for most 
subjects in this analysis, suggesting it may be a more robust 
choice for subjects with different heart conditions. 

 
TABLE IV. AVERAGE BEAT-TO-BEAT INTERVAL ERROR USING DWT 

AND EEMD. 

performance across subjects, with error values ranging from 
0.16 to 0.25 seconds. 

In general, EEMD generally exhibits a slightly longer lag 
time compared to DWT for all subjects. However, the 
differences are relatively small, with a maximum difference 
of 0.05 seconds (Subject 8). This lag time implies that there is 
no exact one-to-one correspondence between the R peak and 
the J peak in the time domain, and this could bring difficulties 
when labeling the data for data modeling and heartbeat 
extraction. Therefore, the signal of interest (SOI) is introduced 
to label the J-peak. The sampling points within the range of - 
0.2 to +0.2 surrounding the reference R-peaks are labeled as 
J-peak. Since reference ECG has been observed to have an 
average variation of -0.06s to +0.06s (Table 3), a label of ‘0’ 
is set as R-peak while width intervals exceeding average 
variation in ECG are labeled as J-peak (label = 1). threshold 
of probability is set at 0.5. A tolerance level of +0. 

B. Data Modelling and Evaluation Results 

Evaluation metrics such as recall, precision, accuracy, 
positive prediction value (PPV), and negative prediction value 
(NPV) were used to assess model performance. In this 
context, precision is the fraction of predicted J-peaks that are 
actually J-peaks. Recall is the fraction of actual J-peaks that 
are correctly predicted. Negative prediction value (NPV) is 
the fraction of predicted non-J-peaks that are actually non-J- 
peaks. Positive prediction value (PPV) is the fraction of actual 
J-peaks that are correctly predicted. It is calculated as follows. 
The number of False Negatives (where they are actually J- 
peaks but are predicted not to be J-peaks) will also be 
considered in evaluating the performance of J-peak 
prediction. 

 
TABLE V. MODEL EVALUATION RESULTS ON VALIDATION DATA IN 
RIGHT AND SUPINE POSITION 

 
 
 
 
 
 
 

The average beat-to-beat interval error (E) is calculated 
using the formula 

E = Sum [absolute difference (JJI - RRI)] / n-intervals (7) 

Where n is the number of heartbeat intervals to be 
considered for the analysis. For computing (E), Ten (10) 
consecutive beat-to-beat intervals were utilized as the input. 
According to scholars Yijun et al. [20], 5–8 BCG intervals that 
fall within the range of 5s are considered sufficient to 
understand the long-term rhythmic features of a heartbeat. 
Therefore, this suggests 10 BCG intervals prove sufficient to 
understand the synchronization of RR and JJ heart-beat 
intervals. In Table 3 above, Subjects 1, 4, and 10 show 
relatively consistent performance with DWT, with average 
beat-to-beat interval error ranging from 0.18 to 0.19 seconds. 
This suggests that DWT consistently aligns J-J intervals with 
RR intervals with a minimal lag time of 0.18s for these 
subjects. Like DWT, EEMD also shows relatively consistent 

EEMD Right 0.76 0.87 0.81 0.33 0.76 0.70 

  EEMD Supine 0.79 0.84 0.81 0.44 0.79 0.72  

The Table above shows the results evaluating the model’s 
performance on validation data using DWT and EEMD Bi- 
LSTM models. The DWT-based models, both on the right 
Lateral and supine positions, outperform the EEMD-based 
model across all evaluation metrics. They exhibit higher 
precision, recall, F1-scores, NPV, PPV, and test accuracy. For 
instance, The DWT Right Lateral model shows higher 
precision (0.94) and recall (0.89). This indicates it has up to 
90% ability to correctly identify J-peaks (with low false 
positives) while capturing a significant portion of the actual J- 
peaks. Also, the DWT models show balanced precision and 
recall, reflected in the F1-scores for the right and supine 
positions (0.91 and 0.84). This indicates consistent 
performance in J-peak detection, with relatively low false 
positives. 

1,50 

CR analysis with DWT and EEMD 
 Right Lateral Position  

1,00   

0,50 
 
0,00 

subject 1 subject 4 subject 8 subject 10 
DWT EEMD 

  Subject  DWT  EEMD    

1 0.18s 0.21s   
    Technique Position Precision Recall F1 NPV PPV Accuracy  

4 0.18s 0.20s  DWT Right 0.94 0.89 0.91 0.33 0.94 0.85 
8 0.22s 0.25s   

  10  0.19s  0.16s   DWT Supine 0.84 0.84 0.84 0.77 0.84 0.81 

 



30 Models and Applications for Embedded Systems 

On the other hand, while the EEMD models show decent 
performance, they fall short in precision for both sleeping 
positions (0.76 and 0.79) and test accuracy compared to DWT 
models. Overall, the Bi-LSTM model is more effective at 
detecting J-peaks using DWT Right Lateral cardiac signal 
than in the other three conditions using the validation data. For 
instance, Subjects 1, 4, and 9 show notable differences in 
BPM across positions. However, in some instances, the BCG- 
derived bpm values are slightly higher than the ECG values 
(e.g., Subject 1 in the Right Lateral position), while in others, 
they are slightly lower (e.g., Subject 2 in the Left Lateral 
position). Also, the BCG-derived bpm values are relatively 
consistent across different sleeping positions. This indicates 
that the BCG method may be robust for monitoring heart rate 
regardless of sleeping posture. In several cases, the DWT- 
derived bpm values are more accurate in the right position 
than in other positions. 
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Data analysis of non-invasive ballistocardiographic sensors 
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Abstract— Unintrusive health monitoring systems is 
important when continuous monitoring of the patient vital 
signals is required. In this paper, signals obtained from 
accelerometers placed under a bed are processed with 
ballistocardiography algorithms and compared with 
synchronized  electrocardiographic signals. 

 

I. INTRODUCTION 

Ballistocardiography (BCG) is a non-invasive medical 
method based on the measurement of movement of the body 
generated by the expulsion of blood in each cardiac cycle. The 
ballistocardiogram is the reaction (displacement, velocity or 
acceleration) of the whole body to the ejection of blood [1]. The 
BCG signal comes from the fact that with each heartbeat blood 
travels through the veins produces a change in the body's center 
of mass. The BCG measures these movements which can be 
acquired in the form of displacement, velocity or acceleration 
along the three directional axes.  

In recent decades, a renaissance has occurred in the field of 
evaluation non-intrusive cardiomechanics through 
ballistocardiographic or seismographic (SCG) signal 
measurement and interpretation methods. These two types of 
systems can be implemented on wearable devices, whose main 
advantage consists in the possibility of acquiring data 
continuously during the normal life of the subject being 
measured. Furthermore, another advantage is that they are able 
to carry out measurements in any environment and under any 
situation of stress. Typically, the most used sensor for this type 
of acquisition is the accelerometer. Recent review papers in this 
field have been published [2-6].  

In some applications the BCG systems are applied on the bed 
structure with the aim of evaluating a subject's sleep and any 
related disorders. In this case, the system is non-invasive system 
and there is no need to use electrodes attached to the patient's 
body. Accelerometer sensors placed under the bed can often 
provide additional information about breathing and movement 
of the body, together with the measurement of heartbeats [7]. 

Since ballistocardiography is a technique that measures the 
heartbeat through vibrations body mechanics, it can be used to 
estimate the heart rate by exploiting sensors that can be mounted 
on the frame of a bed, under the mattress.  
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To this end, different types of sensors can be used, 

including hydraulic sensors, accelerometers, and force sensors. 
There selection of the most suitable sensor for your purpose is 
based on a comparison between costs and noise level and 
accuracy [8]. To derive the heartbeat waveform starting from 
the BCG signal, different algorithms are used, including FFT 
spectrum analysis and the autocorrelation function.  

A data set of measurements to estimate heart rate and 
breathing rate with the person laying on a bed is reported in [9]. 
The vital signals have been acquired by two commercial 
medical devices and one low cost accelerometer prototype: 

1. a commercial ECG Holter (M12R by Global 
Instrumentation) measuring the 12-lead ECG signals; 

2. a commercial wearable sensor attached to a chest strap 
(BioHarness 3.0 by Zephyr Technology) for ECG and 
breathing measurements; 

3. an accelerometer sensor prototype placed under the 
mattress.It consists of a low cost but accurate 
accelerometric sensor ADXL355Z of Analog Devices 
connected to a Raspberry with the SPI bus. 

The aim of the work presented in this paper is the 
synchronization and preliminary signal processing of the data 
acquired in [9] by the different sensors, in order to compare the 
results and estimate the accuracy of the ballistocardiographic 
measurements.  

The objective of the work is the development of non-
invasive measurement methods to monitor useful medical 
parameters, also for the purpose of creating telemedicine 
systems. Starting from acquisitions carried out on a bed 
constructed in such a way as to accommodate the useful 
sensors an analysis is carried out aimed mainly at the 
synchronization of the signals. The synchronization is 
necessary to make the comparison between the signals in order 
to estimate the precision of the heart rate estimation obtained 
from the ballistocardiographic signals. 

 
 

N. Martínez Madrid is with the IoT Lab at Reutlingen University, 
Reutlingen, Germany (natividad.martinez@reutlingen-university.de). 

R. Seepold is with the Ubiquitous Computing Lab at HTWG Konstanz,  
Konstanz, Germany (Email: ralf.seepold@htwg-konstanz.de) 

M. Conti is with the Dip. di Ingegneria dell’Informazione Università 
Politecnica delle Marche, Ancona, Italy (Email: m.conti@univpm.it). 

S. Orcioni is with the Dip. di Ingegneria dell’Informazione Università  
Politecnica delle Marche, Ancona, Italy (Email: s.orcioni@univpm.it). 

 



 

32 Models and Applications for Embedded Systems 

 

II. SINCRONIZATION PROCEDURE 

A. Synchronization on acquisition time 

The experimental data have been acquired as described in 
[9]. The measurement procedure has been applied for each 
one of the 21 volunteers. The volunteer lies down on a bed in 
a supine position, the holter electrodes have been positioned 
on his chest, then the zephyr in an elasticated strap is applied 
to the chest, and acceleration sensors have been placed on the 
structure of the bed.  

The protocol, for a total time of about 20 minutes, consists 
of: a deep breath (about 30 seconds) and a recovery phase 
(about 1 minute) repeated five times, followed by an apnea 
phase (about 30 seconds) and a recovery phase (about 1 
minute) repeated five times. Finally, the person moves from 
supine to prone position and re-mains in prone position for 
about 5 minutes with normal breathing. 

The Zephyr and Holter ECG signals acquisition have a 

duration of twenty minutes, while the acceleration signal 
lasts approximately in ten minutes. For this reason, only the 
first ten minutes of data acquisition are considered.  

The data have been acquired with the time stamp of the 
clock of the different devices, apart from the holter that does 
not store the time stamp.  

An initial synchronization between acceleration and 
Zephyr ECG signals is based on time stamp of the two 
devices.  

The initial s synchronization between Zephyr and Holter 
ECG signals is obtained considering that a maximum of the 
Zephyr breathing signal and a minimum of the Zephyr and 
Holter ECG correspond to each deep breath. Therefore, the 
first maximum of the Zephyr breathing signal and the first a 
minimum of the Holter ECG signal have been aligned. 

Figure 1 reports the results of this preliminary alignment 
for the Zephyr breathing and ECG signals, Holter ECG 
signal, accelerometer signal.  The five deep breath and the 
first two apnea can be seen in Figure 1.

 
 
 
 

 
Figure 1.  Preliminary alignment for the Zephyr breathing and ECG signals, Holter ECG signal, accelerometer signal 
 
 



 

33 Models and Applications for Embedded Systems 

 

 
Figure 2.  Zephyr ECG, Holter ECG and acceleration signals resynchronized. Zephyr ECG and Holter ECG signals has been synchronized on the 
basis of the peaks. Zephyr ECG and acceleration signals has been synchronized on the basis of the time stamp. 
 

 
Figure 3. Zephyr ECG, Holter ECG and acceleration signals of Figure 2 for a short time interval during a deep breath. 
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Figure 4.  Zephyr ECG, Holter ECG and acceleration signals of Figure 2 for a short time interval during an apnea. 
 
 
 
 
 
 
 

B. Synchronization on signals peaks 

In a second phase we considered that the time stamp of the 
devices can be not accurate and that, even if the initial time 
stamp is accurate, during the acquisition this synchronization 
can be lost due to the drift of clock of the devices. 

To make the synchronization more precise, we aligned the 
peaks of the Zephyr and Holter ECG signals. The peaks of the 
ECG signals have been obtained using the Matlab function 
called “Pantompkins” [10]. Zephyr ECG and Holter ECG 
signals has been synchronized on the basis of the peaks. 
Zephyr ECG and acceleration signals has been synchronized 
on the basis of the time stamp. Figure 2 reports the Zephyr 
ECG, Holter ECG and acceleration signals resynchronized in 
this way. Figure 3 reports the Zephyr ECG, Holter ECG and 
acceleration signals of Figure 2 for a short time interval during 
a deep breath. Figure 4 reports the Zephyr ECG, Holter ECG 
and acceleration signals of Figure 2 for a short time interval 
during an apnea. 

The peaks of the accelerometer signal have been obtained 
through a signal processing using a convolution with a 
reference function reported in [8]. 

To confirm the result of this further synchronization 
operation, we calculated the time instants in minutes of the 
peaks of Zephyr ECG, Holter ECG and acceleration signals 
during the ten minutes of acquisition time, reported in Figure 
5. 

The perfect synchronization between Zephyr ECG and 
Holter ECG can be seen in Figure 5. An initial 
synchronization between Holter ECG an acceleration signal 
can be seen in Figure 5. The effect of drift of the clock of the 
Raspberry of the system with the accelerometer can be seen 
in Figure 5. At the end of the ten minutes of measurements 
the synchronization between the Zephyr ECG signals and 
acceleration signal is lost. 

A final study is carried out by analysing of the distance 
between two adjacent peaks of the ECG and the acceleration 
signals. This operation allows you to observe the result of the 
synchronization from another point of view. Figure 6 reports 
the time interval in seconds between two adjacent peaks of the 
Zephyr ECG, Holter ECG and acceleration signals during the 
10 minutes of acquisition time. The peak detection algorithm 
of the acceleration signal is not always accurate, due to the 
fact that the signal is not periodic as ca be seen in Figures 3 
and 4. Therefore sometimes the period detected is double or 
half of the period of the ECG signal. 

It is possible to make the ECG and acceleration signals 
more comparable by filtering the acceleration signal with the 
Matlab "medfilt" function, which filters with respect to the 
median of the signal. The results are reported in Figure 7. 
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Figure 5.  Verification of synchronization. The time instants in minutes of the peaks of Zephyr ECG, Holter ECG and acceleration signals during the 
acquisition time in minutes. 
 
 

 

 
Figure 6.  Distance in seconds between two adjacent peaks of the Zephyr ECG, Holter ECG and acceleration signals during the acquisition time in 
minutes. 
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Figure 7.  Distance in seconds between two adjacent peaks of the Zephyr ECG, Holter ECG signals and acceleration signal after filtering during the 
acquisition time in minutes. 
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III. CONCLUSIONS 

The relevance of the proposed acquisition system is due to 
the possibility to acquire information on a patient's cardiac 
activity using of a low cost accelerometer in non-invasive way. 

The work carried out in this work have the objective to 
verify the accuracy of the accelerometer system. To this aim, 
the time alignment of ECG and accelerometer signals have 
been obtained. Future development will be carried out 
applying the described procedure to the all the data of the 21 
volunteers. 
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